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Pregnancy alters immune responses and clinical manifestations of COVID-19,
but its impact on Long COVID remains uncertain. This study investigated Long
COVID risk in individuals with SARS-CoV-2 infection during pregnancy com-
pared to reproductive-age females infected outside of pregnancy. A retro-
spective analysis of two U.S. databases, the National Patient-Centered Clinical
Research Network (PCORnet) and the National COVID Cohort Collaborative
(N3C), identified 29,975 pregnant individuals (aged 18–50) with SARS-CoV-2
infection in pregnancy from PCORnet and 42,176 from N3C between March
2020 and June 2023. At 180 days after infection, estimated Long COVID risks
for those infected during pregnancy were 16.47 per 100 persons (95% CI,
16.00–16.95) in PCORnet using the PCORnet computational phenotype (CP)
model and 4.37 per 100 persons (95% CI, 4.18–4.57) in N3C using the N3C CP
model. Compared to matched non-pregnant individuals, the adjusted hazard
ratios for Long COVID were 0.86 (95% CI, 0.83–0.90) in PCORnet and 0.70
(95%CI, 0.66–0.74) inN3C. The observed risk factors for LongCOVID included
Black race/ethnicity, advanced maternal age, first- and second-trimester
infection, obesity, and comorbid conditions. While the findings suggest a high
incidence of Long COVID among pregnant individuals, their risk was lower
than that of matched non-pregnant females.

Many individuals who contract SARS-CoV-2 infection experience
new, persistent, or exacerbated symptoms formonths, or even years,
afterward, often referred to as post-acute sequelae of SARS-CoV-2
infection (PASC), or Long COVID1,2. Existing knowledge on Long
COVID, including its incidence, risk factors, subtypes, treatment, and
pathophysiology were mostly developed from non-pregnant, adult
populations1–10. Little is known about Long COVID after SARS-CoV-2
infection during pregnancy.

SARS-CoV-2 infection in pregnancy presents a unique set of
challenges, intertwining aspects of virology, obstetrics, pediatrics, and
public health11,12. Acquiring SARS-CoV-2 infection during pregnancy is
associated with an increased risk of mortality and obstetric
complications11,13–15. These adverse pregnancy outcomes can extend
beyond maternal health to affect the short- and long-term quality of
life of the offspring16–18. The immune response and proteomic changes
during pregnancy in the context of COVID-19 exhibit distinct
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characteristics compared to non-pregnant individuals, indicating a
nuanced relationship between maternal protection of the fetus and
susceptibility to severe disease manifestations12. While SARS-CoV-2
infection acquired in pregnancy is associated with worse perinatal
outcomes, infection during pregnancy has been described as protec-
tive against Long COVID17. However, prior studies have been con-
ducted on relatively small pregnancy cohorts17, limiting the
generalizability of the results. Further, knowledge gaps still exist for
patient counseling including further consideration of gestational age
at the time of SARS-CoV-2 infection in pregnancy and interval Long
COVID risk, as well as the influence of pre-existing co-morbid health
conditions.

In this study, within the National Institutes of Health (NIH)
Researching COVID to Enhance Recovery (RECOVER) initiative19, elec-
tronic health records (EHR) data from 29 sites from the National
Patient-Centered Clinical Research Networks (PCORnet) and 65 sites
from the National COVID Cohort Collaborative (N3C) were analyzed to
build one of the largest retrospective cohorts of females with SARS-
CoV-2 infection during pregnancy. The objective of this study was to
estimate Long COVID risk in individuals acquiring SARS-CoV-2 infec-
tion during pregnancy compared with a similar cohort of
reproductive-age females who acquired SARS-CoV-2 outside of preg-
nancy. The secondary aim was to evaluate the influence of other
variables such as race/ethnicity, infection by pregnancy trimester,
SARS-CoV-2 variants, body mass index, baseline co-morbid health
conditions, and vaccination status on the risk of developing Long
COVID. The Long COVID outcomes were assessed using a PCORnet
rule-based Long COVID Computational Phenotype (CP) method, an
N3C Long COVIDmachine learning (ML) CPmethod, unspecified PASC
diagnoses (ICD10 codes U09.9 or B94.8), and diagnoses of cognitive,
fatigue, and respiratory conditions.

Results
A totalof 492,325 and 1,019,180 eligible reproductive-age females,with
documented SARS-CoV-2 infection between March 1, 2020, and
October 31, 2022, and follow-up to June 1, 2023, who were connected
to the healthcare network before infection, were identified from the
PCORnet and N3C, respectively. Of those, 29,975 were pregnant when
they acquired a SARS-CoV-2 infection in the PCORnet cohort and
42,176 in the N3C cohort. For each pregnant individual, non-pregnant
females were selected for comparison by exactly matching on region,
age, infection time, acute severity, and baseline comorbidities
(Method) with a ratio of 1:3, resulting in 87,127 in the PCORnet and
120,732 in the N3C. The patient selection flow and the population
characteristics are presented in Fig. 1 and Table 1 (More covariates in
Supplementary Table 1), respectively. See the population character-
istics before matching in Supplementary Table 2.

Before matching, as shown in Supplementary Table 2, themedian
age in the pregnant female group was younger than the non-pregnant
female group (30 [interquartile range (IQR), 26-34] vs 35 [IQR 27-43]) in
PCORnet and 30 [IQR, 26-34 vs 36 [IQR 27-44] in N3C). Compared to
non-pregnant females, pregnant females were less likely to have can-
cer, chronic kidney disease, chronic pulmonary disorders, hyperten-
sion,mental health disorders, class III obesity, or to be fully vaccinated
at baseline. By contrast, pregnant females were more likely to have
anemia, coagulopathy, and to be overweight compared with the non-
pregnant females in both cohorts. After matching, as shown in Table 1
(See more covariates in Supplementary Table 1), the two comparison
groups became more comparable in terms of these baseline covari-
ates. To further adjust for any residual differences, inverse probability
of treatment weighting (IPTW) was applied to the matched cohorts
(see Methods) for estimating relative risks. All the measured variables
were well-balanced between the two comparison groups in PCORI and
N3C as summarized in Supplementary Table 3.

Four Long COVID definitions were examined: a PCORnet rule-
based Long COVID definition which includes 15 incident conditions
across multi-organ systems on the PCORnet cohort5,20, an N3C Long
COVIDML Phenotype trying to predictmiss- or under-diagnosed PASC
diagnosis U09.9 on the N3C cohort21,22, unspecified PASC ICD-10
diagnosis U09.9/B94.8, and a sub-cluster of cognitive, fatigue, and
respiratory diagnoses23. The latter twowere cross-checked among two
cohorts as a sensitivity analysis.

Long COVID risk in the PCORnet cohort
At 180 days of follow-up, the estimated risk of Long COVID was 16.47
events per 100 persons (95% confidence interval (CI), 16.00 to 16.95) in
the pregnant group, and 18.88 (95% CI, 18.59–19.17) in the non-
pregnant group (Fig. 2). Compared to non-pregnant females, pregnant
females had a lower risk of Long COVID, with a Hazard Ratio (HR) of
0.86 (95% CI, 0.83–0.90) and risk reduction of 2.41 events per 100
persons (95% CI, 1.85–2.96).

Lower risk of incident Long COVID in the pregnant group was
observed across systems as shown in Fig. 2, including post-acute
neurological conditions (sleep disorders, cognitive problems, ence-
phalopathy), post-acute pulmonary conditions (pulmonary fibrosis,
acute pharyngitis, shortness of breath), post-acute circulatory condi-
tion (chest pain), and some general conditions in the post-acute phase
(e.g., malaise and fatigue, unspecified Post-COVID-19 diagnostic codes
U099/B948, smell, and taste). A few exceptions are post-acute meta-
bolic conditions (edema, diabetes, malnutrition), post-acute muscu-
loskeletal conditions (joint pain), pulmonary fibrosis, and fever, which
showed no significant difference between the two groups.

Comparison with the N3C cohort
Using the N3C cohort with the applied N3C ML phenotype, the esti-
mated risk of Long COVID at 180 days in the N3C cohort was 4.37
events per 100 persons (95% CI, 4.18–4.57) in the pregnant group and
6.21 (95%CI, 6.07–6.35) in the non-pregnant group. The same relatively
lower risk of Long COVID in the pregnant group compared to the non-
pregnant group was observed in the N3C cohort (Fig. 2) with HR of
0.70 (95% CI, 0.66–0.74) and risk reduction of 1.84 events per 100
persons (95% CI, 1.60–2.08).

Long COVID Risk in Sub-populations
Regarding absolute risks in the pregnant female group, as shown in
Fig. 3, we observed higher Long COVID risk in several subgroups: self-
reported Black individuals compared to White individuals, individuals
with advanced maternal age (≥ 35 years compared to those aged <35
years), those infected during the first two trimesters compared to the
third trimester, those infected during the Delta and Omicron periods
(compared to earlier variants), individuals with obesity compared to
those who were overweight or of normal weight, and those with
baseline chronic medical conditions compared to those without.
Similar absolute risks were observed in subgroups regardless of vac-
cination status.

When compared to the non-pregnant group, the same relatively
lower risk of Long COVID in the pregnant group was obtained across
different subpopulations stratified by self-reported race/ethnicity
(White, Black), age ( < 35 years, ≥ 35 years), SARS-CoV-2 variants of
concern (ancestral, Alpha, Delta, and Omicron), body mass index
(normal, overweight, and obese), having baseline chronic medical
conditions (yes or no), vaccination status (fully vaccinated, any vaccine
records, or no vaccine records), and acquiring SARS-CoV-2 during the
3rd trimester, across two cohorts (Fig. 3). A few exceptions are no sig-
nificant or moderate higher risk in patients infected during the 1st
trimester (HR 1.07 (0.97 to 1.19) in PCORnet, HR 1.17 (1.03, 1.34) in N3C)
or 2nd trimester (HR 1.15 (1.08 to 1.23) in PCORnet, HR0.89 (0.81, 0.97)
in N3C.
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SARS-CoV-2 positive patients from PCORNet
Cohort,

from March 2020 to June 2023
N=2,706,199

Adult SARS-CoV-2 positive patients with age ≥ 18
N=2,306,009

Any diagnoses in 3 years to 7 days before index 
date

N=1,787,577

Index date before October 31, 2022
N=1,582,659

Female
N=958,966

Pregnant females
N=62,426

SARS-CoV-2 infection in 
gestational period and

delivery/live birth
N=29,975

Exact Matched
Non-pregnant females 

with ratio 1:3
N=87,127

a

COVID-19 onset

Baseline period
(Confounder collection)

Post-acute period
(Impact evaluation)

PASC/Long COVID

Acute 
Period

30 d +180 d-3 y -7 d 0

b

Age ≤ 50 
N=525,167

Delivery
Gestational Period

(6-42 weeks)

SARS-CoV-2 positive patients from N3C Cohort,
from March 2020 to June 2023

N=7,430,405

Adult SARS-CoV-2 positive patients with age ≥ 18
N=6,271,895

Two or more visits in the year prior to infection and
One or more visit at least 100 days after the index

date
N=3,819,456

Index date before October 31, 2022
N=3,569,197

Female 
N=2,183,602

Pregnant females
N=280,043

SARS-CoV-2 infection in 
gestational period and

delivery/live birth
N= 42,176

Exact Matched
Non-pregnant females 

with ratio 1:3 
N=120,732

Age ≤ 50 
N=1,257,047

Non-pregnant females
N=462,350

Non-pregnant females 
N=977,004

Fig. 1 | Cohort selection. a Selection of females with SARS-CoV-2 infection during
pregnancy or not, from the PCORnet cohort and N3C cohort. The SARS-CoV-2
infectionwas betweenMarch 1st, 2020, andOctober 31, 2022, and follow-up to June
1st, 2023. b Study design. The post-acute sequelae of SARS-CoV-2 infection (PASC),
or Long COVID, outcomes were ascertained from day 30 after the SARS-CoV-2
infection and the adjusted risk was computed at 180 days after the SARS-CoV-2

infection. Twoexposuregroups are pregnant individuals who acquired SARS-CoV-2
during pregnancy as illustrated in b compared with outside of pregnancy. The
pregnant group was comparedwith exactlymatched non-pregnant females on site
region, age, infection time, acute severity, and selected baseline comorbidities
including diabetes, hypertension, autoimmune or immune suppression, mental
health disorders, severe obesity, and asthma with a ratio of 1:3.
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Sensitivity analyses
We further cross-checked the risk of Long COVID in terms of unspe-
cified PASC ICD-10 diagnostic codes U099 or B948, and a subcluster of
post-acute cognitive, fatigue, and respiratory conditions, in both
PCORnet cohort and N3C cohort as shown in Fig. 4.

Regarding the unspecified PASC ICD-10 diagnostic codes U099 or
B948, the estimated risk at 180 days was 0.19 (95% CI, 0.14–0.25)
events per 100 persons in the pregnant group and 0.60 (0.55–0.66) in
thenon-pregnant groupwithin the PCORnet cohort. In theN3C cohort,
the estimated risk was 0.23 (0.19–0.28) events per 100 persons in the
pregnant group and 0.44 (0.40–0.48) in the non-pregnant group. This
indicates that the pregnant group consistently exhibited a relatively
lower risk—approximately two to three times lower—compared to the
matched non-pregnant group across both cohorts.

Regarding having any post-acute cognitive, fatigue, and respira-
tory conditions, the estimated risk was 4.86 (4.59–5.14) events per 100
persons in the pregnant group and 6.79 (6.60–6.97) events per 100
persons in the non-pregnant group within the PCORnet cohort. In the
N3C cohort, the estimated risk was 6.83 (6.59–7.08) events per 100
persons in the pregnant group and 9.54 (95% CI, 9.37–9.71) events per
100 persons in the non-pregnant group.

Consistency was observed in both absolute and relative risks
when applying these two Long COVID definitions across the two
cohorts. Regarding different Long COVID outcomes in various sub-
populations (Figs. 5 and 6), we observed a consistent pattern of lower
relative risk in pregnant females comparedwith non-pregnant females,
along with similar gradients of absolute risks across subgroups within
the pregnant group. One exception was a higher incidence of

Table 1 | Baseline characteristics of SARS-CoV-2 positive pregnant females and matched SARS-CoV-2 positive non-pregnant
females from PCORnet and N3C, March 2020 to October 2022a

PCORnet N3C

Pregnant females Non-Pregnant females SMDb Pregnant Females Non-Pregnant females SMD

N 29,975 87,127 42,176 120,732

Age (years)— Median (IQR) 30 (26–34) 30 (26–35) 0.00 30 (26–34) 30 (26–34) −0.04

Age group — N (%)

18- < 25 years 5858 (19.5) 17,065 (19.6) 0.00 7932 (18.8) 23,057 (19.1) −0.01

25- < 30 years 8212 (27.4) 23,784 (27.3) 0.00 11,622 (27.6) 32,855 (27.2) 0.01

30- < 35 years 9303 (31.0) 26,956 (30.9) 0.00 13,668 (32.4) 38,855 (32.2) 0.00

35- < 40 years 5305 (17.7) 15,553 (17.9) 0.00 7293 (17.3) 21,059 (17.4) 0.00

40- < 45 years 1188 (4.0) 3460 (4.0) 0.00 1572 (3.7) 4648 (3.8) −0.01

45-50 years 109 (0.4) 309 (0.4) 0.00 86 (0.2) 258 (0.2) 0.00

Race/Ethnicity — N (%)

Asian 1301 (4.3) 3756 (4.3) 0.00 1533 (3.6) 3926 (3.3) 0.02

Black or African American 5250 (17.5) 14,888 (17.1) 0.01 7049 (16.7) 21,524 (17.8) −0.03

White 16,874 (56.3) 47,946 (55.0) 0.03 27,250 (64.6) 77,663 (64.3) 0.01

Otherc 3221 (10.7) 6667 (7.7) 0.11 818 (1.9) 4134 (3.4) −0.09

Hispanic 6970 (23.3) 12,580 (14.4) 0.23 6476 (15.4) 14,821 (12.3) 0.09

ADI — Median (IQR) 45 (24—67) 42 (19—63) 0.13 45 (15–75) 45 (25–75) −0.08

BMI—Median(IQR) 30 (26—36) 28 (23–35) −0.02 31 (27–36) 29 (24–37) 0.07

Coexisting Conditions — N (%)

Anemia 3871 (12.9) 6146 (7.1) 0.20 7931 (18.8) 9456 (7.8) 0.33

Asthma 3237 (10.8) 8709 (10.0) 0.03 4675 (11.1) 12,573 (10.4) 0.02

Cancer 396 (1.3) 1862 (2.1) −0.06 524 (1.2) 2299 (1.9) −0.05

Chronic Kidney Disease 156 (0.5) 579 (0.7) −0.02 406 (1.0) 873 (0.7) 0.03

Chronic Pulmonary Disorders 3531 (11.8) 10,362 (11.9) 0.00 5260 (12.5) 15,014 (12.4) 0.00

Coagulopathy 1244 (4.2) 1481 (1.7) 0.15 1671 (4.0) 1997 (1.7) 0.14

Diabetes (Type 1 or 2) 794 (2.6) 1636 (1.9) 0.05 1374 (3.3) 2971 (2.5) 0.05

Hypertension 1548 (5.2) 3765 (4.3) 0.04 2440 (5.8) 6260 (5.2) 0.03

Mental Health Disorders 4223 (14.1) 11,768 (13.5) 0.02 7815 (18.5) 21,891 (18.1) 0.01

Substance Abuse 2316 (7.7) 6521 (7.5) 0.01 1468 (3.5) 3763 (3.1) 0.02

Obstructive sleep apnea 407 (1.4) 1830 (2.1) −0.06 607 (1.4) 3348 (2.8) −0.09

Corticosteroids Prescription 2957 (9.9) 10,823 (12.4) −0.08 3269 (7.8) 9255 (7.7) 0.00

Immunosuppressant drugs 1748 (5.8) 3326 (3.8) 0.09 370 (0.9) 1189 (1.0) −0.01

Autoimmune/Immunesuppressd 4581 (15.3) 13,114 (15.1) 0.01 3869 (9.2) 10,686 (8.9) 0.01

Severe Obesitye 4255 (14.2) 11,578 (13.3) 0.03 4903 (11.6) 13,116 (10.9) 0.02

IQR, interquartile range. BMI, Body Mass Index. ADI Area Deprivation Index.
aThe SARS-CoV-2 positive was identified by PCRor antigen test or diagnosis U071 or prescription of Paxlovid or Remdesivir. Each pregnant individual wasmatchedwith non-pregnant females with a
ratio of 1:3 on site region, age, infection time, acute severity, and baseline conditions including diabetes, hypertension, autoimmuneor immune suppression,mental health disorders, severe obesity,
and asthma.
bA standardized mean difference (SMD) of abs(SMD) >0.1 indicates an important effect size difference between the two populations, otherwise, no significant difference is assumed.
cThe other category encompasses American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Multiple race/ethnicities, and others per the PCORnet Common Data Model.
dAutoimmune/immune suppression denotes any prescription of corticosteroids or immunosuppressant drugs, or any diagnosis of Lupus, rheumatoid arthritis, or inflammatory bowel disorder.
eSevere obesity is either BMI ≥40kg/m2 or any severe obesity diagnosis.
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unspecified Long COVID diagnoses in the Delta era among pregnant
groups compared to other periods.

Our findings remain consistent across various SARS-CoV-2 iden-
tificationmethods, cohort selection criteria, and amodified rule-based
Long COVID phenotype method. Specifically, when we identified
SARS-CoV-2-infected patients in the PCORnet cohort using only the lab
tests and diagnoses, excluding Paxlovid or Remdesivir (see Method-
Study cohort), as shown in Supplementary Fig. 1, the risks and relative
risks are largely the sameas theprimary results in Figs. 2 and4. Second,
requiring at least two visits during the baseline period and at least one
visit in the follow-upperiod, as shown in Supplementary Fig. 2, resulted
in an increased cumulative incidence of Long COVID in both pregnant
and non-pregnant groups compared to the primary analysis
(Figs. 2 and4).However, the risks of LongCOVID in thepregnant group
remained lower than in the non-pregnant group, with the adjusted
hazard ratios even lower than those in the primary analysis
(Figs. 2 and 4). Finally, we examined a variant of the PCORnet rule-
based phenotype method by excluding the edema condition. As
shown in Supplementary Fig. 3, the cumulative incidence of any Long
COVID condition was lower in both groups due to the exclusion of the
edema. However, the primary finding of lower risk of Long COVID in
the pregnant group compared to the non-pregnant cohorts remains
robust.

Discussion
In this retrospective cohort study involving 29 PCORnet sites and 65
N3C sites as part of the RECOVER initiative, we estimated the risk of
Long COVID in pregnant females with SARS-CoV-2 infection during

pregnancy. The long-term implications of COVID-19 in pregnancy are
significant, as reflected in the different Long COVID outcomes cap-
tured across the two cohorts. In the PCORnet cohort, the estimated
risk of Long COVID at 180 days of follow-up was 16.47 events per 100
persons (95% CI, 16.00–16.95) based on a rule-based Long COVID
phenotype method. In the N3C cohort, the estimated risk of Long
COVID was events per 100 persons 4.37 (4.18–4.57) using a machine
learning-based approach. The risks of unspecified PASC diagnostic
codes U099 or B948 were 0.19 events per 100 persons (95% CI, 0.14
–0.25) in PCORnet and0.23 events per 100persons (95%CI, 0.19–0.28)
in N3C. The risks of post-acute cognitive, fatigue, and respiratory
condition were 4.86 events per 100 persons (95% CI, 4.59–5.14) in
PCORnet and 6.83 events per 100 persons (95% CI, 6.59 –7.08) in N3C.
A higher incidence of Long COVID was observed in self-reported Black
patients, patients with advanced maternal age, those infected during
the first two trimesters, individuals with obesity, and those with
baseline conditions.

Of note, we observed a relatively lower risk of Long COVID in
pregnant individuals compared to SARS-CoV-2-infected non-pregnant
females who were exactly matched on region, age, infection time,
acute severity, and baseline comorbidities. The lower risk patterns
were consistent across different Long COVID phenotype methods in
both PCORnet and N3C cohorts: the adjusted Hazard Ratio (aHR) of
0.86 (95% CI, 0.83 to 0.90) and risk reduction of 2.41 events per 100
persons (95% CI, 1.85 to 2.96) for the PCORnet cohort with its rule-
based phenotypemethod; the aHRof 0.70 (95%CI, 0.66–0.75) and risk
reduction of 1.84 events per 100 persons (95% CI, 1.60 to 2.08) for the
N3C cohort with its ML-based phenotype method; aHRs of 0.32 (95%

Fig. 2 | Long COVID risks in the SARS-CoV-2 infected pregnant women versus
the matched infected non-pregnant women in PCORnet and N3C. Outcomes
were ascertained 30days after thefirst documentedSARS-CoV-2 infection evidence
until the end of the follow-up. The absolute risk, risk ratio, and risk difference were
captured by the cumulative incidence (CIF), hazard ratio (HR), and the differenceof

cumulative incidence per 100 persons (DIFF/100), estimated at 180 days after the
infection index date, respectively. The centers of the error bars were adjusted
hazard ratios calculated by the Cox proportional hazard model, and error bars
indicated two-sided 95% confidence intervals (95% CI).
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Fig. 3 | Long COVID, risk in different sub-populations in PCORnet and N3C
cohorts. Corresponding sub-populations in the SARS-CoV-2 infected pregnant
women and the infected non-pregnant women were compared. Outcomes were
ascertained 30 days after the first documented SARS-CoV-2 infection evidence until
the end of the follow-up. The absolute risk, risk ratio, and risk difference were
captured by the cumulative incidence (CIF), hazard ratio (HR), and the difference of

cumulative incidence per 100 persons (DIFF/100), estimated at 180 days after the
infection index date, respectively. The centers of the error bars were adjusted
hazard ratios calculated by the Cox proportional hazard model, and error bars
indicated two-sided 95% confidence intervals (95% CI). Having co-existing risk fac-
tors is having any hypertension, diabetes, class III obesity, and asthma at baseline.

Fig. 4 | Risks of unspecified PASC diagnoses and Cognitive, Fatigue, and
Respiratory symptom cluster among the SARS-CoV-2 infected pregnant
women versus the matched infected non-pregnant women, in PCORnet and
N3Ccohorts.Outcomeswereascertained 30days after thefirst documented SARS-
CoV-2 infection evidenceuntil the end of the follow-up. The absolute risk, risk ratio,

and risk difference were captured by the cumulative incidence (CIF), hazard ratio
(HR), and the difference of cumulative incidence per 100 persons (DIFF/100),
estimated at 180days after the infection index date, respectively. The centers of the
error bars were adjusted hazard ratios calculated by the Cox proportional hazard
model, and error bars indicated two-sided 95% confidence intervals (95% CI).
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CI, 0.22, 0.46) and 0.53 (95%CI, 0.41, 0.68) for unspecific PASC ICD-10-
CM diagnostic codes U099 or B948 in PCORnet and N3C respectively;
and aHRs of 0.70 (95% CI, 0.65, 0.76) and 0.70 (95% CI, 0.67, 0.74) for
the cognitive, fatigue, and respiratory diagnoses cluster in PCORnet
and N3C respectively. Furthermore, the pattern of relatively lower risk
of Long COVID in pregnant individuals compared to non-pregnant
females was largely consistent across different subpopulations and
robust to various sensitivity analyses in terms of various Long COVID
definitions in both the PCORnet and N3C cohorts.

Pregnancy reflects a period of physiologic immune tolerance to
accommodate fetal development. Differences in regulatory T cells,
cytokines, and other immune cells have been described during preg-
nancy and are thought to prevent maternal immune system rejection
of the fetus24. More severe disease courses from other viruses, such as
influenza, have been described during pregnancy and attributed to
these immune alterations25. We might hypothesize that the altered
immune and inflammatory environment during the puerperium likely
contributes to the lower risk of Long COVID identified among the
pregnant compared to the non-pregnant cohorts. The observed risk
differences in this analysis suggest future dedicated pathophysiology
and immune studies of Long COVID in pregnant individuals are war-
ranted. Inparticular, a focus ondifferences in LongCOVIDby trimester
maybe informative for patient counseling. Ahigher risk of LongCOVID
in self-reported Black females draws attention to racial and ethnic
disparities in the development of Long COVID among individuals who
acquired the SARS-CoV-2 infection during pregnancy, which may be
related to factors such as inequitable healthcare access, socio-
economic factors, and structural racism.

This study has several strengths. First, the utilization of two large-
scale clinical data networks, consisting of 73 unique hospital systems,
allowed for more comprehensive analyses with substantial statistical
power, particularly for the pregnant groups. In a prior publication17, a

subset of 5,397 eligible pregnant females acquiring COVID-19 during
pregnancy from 19 PCORnet sites was reported. The sample size pre-
cluded subgroup analyses with adequate power. Through collabora-
tive efforts from PCORnet, N3C, and the RECOVER-Pregnancy Cohort
within RECOVER, for this analysis, 72,151 eligible pregnant femaleswith
infection during pregnancy, and 207,859 exactly matched infected
non-pregnant females with a ratio of 1:3, were identified. Second,
Detailed subgroup analyses were performed, stratified by self-
reported race/ethnicity, maternal age, variants of concern, BMI,
baseline co-morbid health conditions, and infection by trimester.
Third, we characterized and cross-checked the Long COVID risk in
terms of four different definitions including a rule-based definition
organized by multi-organ systems in PCORnet5,20, a machine-learning
Long COVID phenotype in N3C21, unspecified PASC diagnosis U099/
B948, and a sub-cluster of cognitive, fatigue, and respiratory
diagnoses23. The similar patterns and triangulation fromdifferent Long
COVID definitions across two different cohorts further strengthen the
confidence in these findings.

There are also several limitations. First, this is a retrospective
observational study based on electronic health records, which might
suffer from potential residual confounding, missingness, and mis-
classification of pregnancy and study variables. Second, due to sepa-
rate data systems following different commondatamodels, we did not
implement the PCORnet Long COVID definition for the N3C cohort or
the N3C Long COVID predictive model for the PCORnet cohort.
However, un-specific PASC diagnoses and the cognitive, fatigue, and
respiratory conditions were cross-checked in both cohorts and the
results suggested consistent conclusions. Third, the associations
between vaccine status and Long COVID require further dedicated
investigation. More than 82% of patients in the pregnant female group
showed no vaccine data (Table 1), higher than the nearly 77% no data
portion in the infected non-pregnant group. The no-vaccine data could

Fig. 5 | Risks of Cognitive, Fatigue, and Respiratory symptoms cluster in dif-
ferent sub-populations from the PCORnet cohort and N3C cohort. Corre-
sponding sub-populations in the SARS-CoV-2 infected pregnant women and the
infected non-pregnant women were compared. Outcomes were ascertained
30 days after the first documented SARS-CoV-2 infection evidence until the end of
the follow-up. The absolute risk, risk ratio, and risk differencewere captured by the

cumulative incidence (CIF), hazard ratio (HR), and the difference of cumulative
incidence per 100 persons (DIFF/100), estimated at 180 days after the infection
index date, respectively. The centers of the error bars were adjusted hazard ratios
calculated by the Cox proportional hazard model, and error bars indicated two-
sided 95% confidence intervals (95% CI). Having co-existing risk factors is having
any hypertension, diabetes, class III obesity, and asthma at baseline.
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have derived from both poor capture of vaccine data in EHR and the
initial low public confidence about COVID-19 vaccination in pregnancy
(due to lack of enrollment of pregnant people in the early vaccine
trials), and thus low vaccination rates in pregnant individuals. Fourth,
though adjusting for healthcare utilizations at baseline, pregnant
individuals usually have frequent prenatal care visits (particularly for
first and second-trimester infections), whichmay result in higher rates
of detection of the Long COVID outcome variables in those popula-
tions. Finally, we cross-checked the Long COVID risks among pregnant
individuals in terms of different Long COVID modeling approaches
across two large clinical research networks; however, validation with
external cohorts and prospective cohorts is still needed.

Methods
Data
This study utilized electronic healthcare records (EHR) data from two
clinical research networks (CRN) in the U.S., namely the National
Patient-Centered CRN (PCORnet) and the National COVID Cohort
Collaborative (N3C), within the RECOVER initiative. Analyzes were
conducted separately for each cohort by following a similar experi-
mental protocol and the same statistical analytics.

The PCORnet RECOVER infrastructure leveraged PCORnet to
develop a single, unified EHR/RWD repository to study PASC across
~28.25million (18.75million adult − 9.5million pediatric) patients from
40 adult and pediatric health systems nationwide who continue to
refresh their data at least quarterly. The source data includes patients
tested for COVID-19 (regardless of result), those diagnosed with
COVID-19, those who received COVID-19 vaccine and therapeutics
(e.g., Remdesivir and Paxlovid), and/or those who have received a
respiratory diagnosis since 2019. The enclave contains structured EHR
data consisting of inpatient and ambulatory encounters, laboratory

results, vital signs, medications, diagnoses, procedures, birth dates,
sex, and race/ethnicity information. The EHR data is linked to geo-
coded data to the level of the census tract, block group, and/or 9-digit
zip code to allow linkage to exposome information to assess the
influence of SDoH and environmental exposures on COVID-19 out-
comes. In addition, the data enclave includes clinical notes for NLP,
vaccine registries, and death registries.

Individual EHR data is stored in the N3C Data Enclave, which
provides access to harmonized EHRs from 84 health sites with data
fromover 22.8million patients (as of August 1st, 2024). For the current
investigation,we usedN3Cdata fromversion 152 (2023-12-07), andour
final cohort encompasses contributions from 65 sites that had indivi-
duals who met our inclusion criteria. The N3C Data Enclave uses the
Palantir Foundry platform (2021, Denver, CO), a secure analytics plat-
form, for data access and analysis. N3C’s methods for patient identi-
fication, data acquisition, ingestion, data quality assessment, and
harmonization have been described previously26,27. The N3C EHR data
is structured in a similar way to PCORnet, consisting of inpatient and
ambulatory encounters, laboratory results, vital signs, medications,
diagnoses, procedures, birth dates, sex, and race/ethnicity informa-
tion. Data for individuals is geocoded at the 9-digit zip code level, and
sites are linked to vaccine registries, as well as a privacy-preserving
record linkage to mortality and CMS (Medicare and Medicaid)
claims data.

Ethics oversight
The use of the PCORnet data was approved by the Institute Review
Board (IRB) under Biomedical Research Alliance of New York (BRANY)
protocol #21-08-508. As part of the Biomedical Research Alliance of
New York (BRANY IRB) process, the protocol has been reviewed in
accordance with the institutional guidelines. The Biomedical Research

Fig. 6 | Risks of unspecified PASC diagnoses U099/B948 in different sub-
populations from the PCORnet cohort and N3C cohort. Corresponding sub-
populations in the SARS-CoV-2 infected pregnant women and the infected non-
pregnant women were compared. Outcomes were ascertained 30 days after the
first documented SARS-CoV-2 infection evidence until the endof the follow-up. The
absolute risk, risk ratio, and risk difference were captured by the cumulative

incidence (CIF), hazard ratio (HR), and the difference of cumulative incidence per
100 persons (DIFF/100), estimated at 180 days after the infection index date,
respectively. The centersof the errorbarswereadjustedhazard ratios calculatedby
the Cox proportional hazard model, and error bars indicated two-sided 95% con-
fidence intervals (95% CI). Having co-existing risk factors is having any hyperten-
sion, diabetes, class III obesity, and asthma at baseline.
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Alliance of New York (BRANY) waived the need for consent and HIPAA
authorization. Institutional Review Board oversight was provided by
the Biomedical Research Alliance of New York, protocol #21-08-508-
380. The N3C data transfer is performed under a Johns Hopkins Uni-
versity Reliance Protocol #IRB00249128 or individual site agreements
with NIH. The N3C Data Enclave ismanaged under the authority of the
NIH; information can be found at https://ncats.nih.gov/n3c/resources.
This work was conducted under DUR RP-5677B5. The N3C received a
waiver of consent from NIH Institutional Review Board under the 1996
Health Insurance Portability andmetho Accountability Act privacy
regulations for a Limited Data Set.

Study Cohort
For our base cohort in PCORnet, we includedSARS-CoV-2 patientswith
at least one positive SARS-CoV-2 polymerase-chain-reaction (PCR) or
antigen laboratory test, COVID-19 diagnosis code U07.1, or prescrip-
tion of Paxlovid or Remdesivir, between March 01, 2020, and June 30,
2023. The COVID-19 index date was defined as the date of the first
documented positive COVID-19 record if they had (a) positive SARS-
CoV-2 polymerase-chain-reaction (PCR) or antigen laboratory tests; (b)
the International Classification of Diseases, Tenth Revision, Clinical
Modification (ICD-10-CM) diagnosis code U07.1 representing COVIID-
19 diagnosis; or (c) Paxlovid (nirmatrelvir/ritonavir) or Remdesivir
prescriptions, whichever occurred earlier. We required female
patients, aged between 18 to 50 years old, and at least one diagnosis
code within three years to seven days before the index date to be
included in the cohort. The baseline period was defined as three years
before the index date, and the post-acute phase, or the follow-up
period, was set as 31 days to 180 days after the index date. We further
require the index date before October 31, 2022, to guarantee at least a
180-day follow-up period.

For our base cohort inN3C,we included SARS-CoV-2patientswith
at least one positive SARS-CoV-2 polymerase-chain-reaction (PCR) or
antigen laboratory test, or COVID-19 diagnosis code U07.1 before
October 31, 2022. The COVID-19 index date was defined as the date of
the first documented positive COVID-19 lab test or diagnosis. The
baseline period included all individual records going back to 2018, and
we required at least two visits within one year before the index date.
We further required at least one visit more than 100 days after the
index date to ensure individuals didn’t leave our data sample.

The primary exposure group included SARS-CoV-2 infection
during pregnancy compared with outside of pregnancy. Thus, we
identified two comparison groups: females acquiring SARS-CoV-2
during pregnancy versus outside pregnancy, applying additional elig-
ibility criteria requiring infection in the gestational period for the
pregnant females. The infection during pregnancy was defined as the
first documented SARS-CoV-2 infection occurring between the start of
pregnancy and the date of delivery. The delivery event was ascertained
by identifying diagnosis codes related to delivery outcomes or
delivery-related procedures28 after March 01, 2020. The start of the
pregnancy and gestational age were approximated using the Z3A
codes associated with the date of the delivery in PCORnet29. Preg-
nancies in N3C were identified using a hierarchical rules-based algo-
rithm described in a previous paper, which also uses Z3A codes to
define gestational age30. The gestational periodwasdefined as the start
of the pregnancy to the delivery event. In both PCORnet and N3C, we
identified the SARS-CoV-2-infected pregnant group as those females
with identified delivery events and SARS-CoV-2-infection occurring
within the gestational period. The SARS-CoV-2-infected non-pregnant
group consisted of individuals without any identified delivery events
within the study windows.

The pregnant individuals were compared with exactly matched
non-pregnant females on site region, age, infection time, acute
severity, and selected baseline comorbidities including diabetes,
hypertension, autoimmune or immune suppression, mental health

disorders, severe obesity, and asthma with a ratio of 1 to 3. The cohort
selection flow is illustrated in Fig. 1a.

Outcomes
The definition of Post-acute Sequelae of SARS-CoV-2 (PASC), or Long
COVID, used for this study varies between PCORnet and N3C. In
PCORnet, the Long COVID definition for pregnant females is a rules-
based computable phenotyping algorithm leveraging International
Classification of Diseases (ICD) 10th Version codes for 15 incident
conditions, including cognitive problems, encephalopathy, sleep dis-
orders, acute pharyngitis, shortness of breath (dyspnea), pulmonary
fibrosis, chest pain, diabetes, edema, malnutrition, joint pain, fever,
malaise and fatigue, ICD-10-CM diagnosis codes U099/B948 for
unspecified PASC, and smell and taste. These conditions were identi-
fied based on previous studies5,20, evidence from the literature20,31,32,,
and tailored for pregnant females17. An incident condition was defined
as occurring in SARS-CoV-2 infected patients who developed the
condition between 31 days and 180 days after the acute infection,
provided they did not have the condition three years to seven days
before their acute infection. Long COVID was defined as having any
incident condition from the abovementioned list.

In contrast, in the N3C cohort, Long COVID was defined primarily
through a machine learning algorithm, specifically, the PASC Machine
Learning 2.0 (LCM 2.0)21,22. Thismachine-learning pipeline predicts the
presence of Long COVID using information extracted from the EHR
data, creating a computable phenotype for Long COVID. The model
was designed to address challenges such as missing data and idio-
syncratic coding practices inherent in EHRs. Unlike its predecessor,
LCM 1.0, which relied on the acute COVID-19 date as an anchor point
for analysis, LCM 2.0 employs set time windows applicable to all
patients, regardless of their COVID-19 index dates. These time win-
dows, progressing through overlapping 100-day periods, enable the
model to assess the probability of Long COVID across diverse patient
populations, including those with suspected or untested COVID-19
cases and individuals experiencing multiple SARS-CoV-2 reinfections.

Two alternative definitions for Long COVID were further cross-
checked in both PCORnet and N3C including a) un-specific PASC ICD-
10-CM diagnostic codes U099 (Post COVID-19 condition, unspecified)
or B948 (Sequelae of other specified infectious and parasitic diseases)
and b) cognitive, fatigue, and respiratory diagnoses cluster23.

Baseline covariates
A broad range of potential confounders collected at the time of
infection were considered for the adjusted analyzes. These covariates
included age at infection, self-reported race/ethnicity, national-level
Area Deprivation Index (ADI)33, healthcare utilization, time of infec-
tion, the most recent body mass index (BMI), smoking status, ICU or
ventilation in acute infection, COVID-19 vaccine status, and a range of
baseline health comorbidities. Age was categorized into 18–24 years,
25–29 years, 30–34 years, 35–39 years, 40–44 years, and 45–50 years.
The self-reported race/ethnicity was categorized as Asian, Black or
African American, White, other (by grouping American Indian or
Alaska Native, Native Hawaiian or Other Pacific Islander, Multiple race/
ethnicity, and other categories in the PCORnet Common Data
Model34), missing, and self-reported ethnicity as Hispanic, not His-
panic, and other/missing. TheADI,which ranks from 1 to 100,was used
to capture the socioeconomic disadvantage of patients’ residential
neighborhoods with 1 indicating the lowest level of disadvantage33. We
used geocodes or 9-digit zip codes to link to the national ADI per-
centiles. Healthcare utilization was measured as the number of inpa-
tients and emergency encounters (0 visits, 1 or 2 visits, 3 or 4 visits, and
5 or more visits for each encounter type). The infection time was
categorized into bins spanning every fourmonths sinceMarch 2020 to
account for different periods of the pandemic. The BMI was categor-
ized into underweight (<18.5 kg/m2), normal weight (18.5–24.9 kg/m2),
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overweight (25.0–29.9 kg/m2), and obese (≥30.0 kg/m2), and missing
according to the Centers for Disease Control and Prevention guideline
for adults35. The severe acute infection was approximated by the
ventilation status and critical care during the infection.

We collected a range of baseline co-morbid health conditions
based on a tailored list of the Elixhauser comorbidities36 and related
drug categories, including alcohol abuse, anemia, arrhythmia, asthma,
cancer, chronic kidney disease, chronic pulmonary disorders, cir-
rhosis, coagulopathy, congestive heart failure, chronic obstructive
pulmonarydisease, coronary artery disease, dementia, diabetes (type 1
or 2), end-stage renal disease on dialysis, hemiplegia, HIV, hyperten-
sion, inflammatory bowel disorder, lupus or systemic lupus erythe-
matosus, mental health disorders, multiple sclerosis, Parkinson’s
disease, peripheral vascular disorders, pulmonary circulation disorder,
rheumatoid arthritis, seizure/epilepsy, severe obesity (BMI ≥ 40 kg/
m2), weight loss, Down syndrome, other substance abuse, cystic
fibrosis, autism, sickle cell, obstructive sleep apnea, Epstein-Barr and
Infectious Mononuclesosi, Herpes Zoster, corticosteroid drug pre-
scriptions, and immunosuppressant drug prescriptions. Patients in
PCORnet were considered to have a condition if they had at least one
corresponding diagnosis ormedicationdocumented in the three years
before theCOVID-19 index date, and inN3Cconditionswere defined as
any corresponding diagnosis or medication in the data (starting in
2018) prior to COVID-19 index date. The N3C used OMOP concept sets
to match corresponding variables in PCORnet, but did not include
cirrhosis, multiple sclerosis, lupus, Parkinson’s disease, seizure/epi-
lepsy, cystic fibrosis, autism, Epstein-Barr and Infectious Mono-
nucleosis, or Herpes Zoster as health conditions. Corticosteroid and
immunosuppressant prescription variables were created using the
same drug codes as PCORnet.

Follow-up period
We followed each patient from 30 days after their index date until the
occurrence of the first target outcome, documented death, loss of
follow-up in the database, 180days after the baseline, or the end of our
observational window (June 30, 2023), whichever came first.

Statistical analyses
For each individual in the pregnant group, the SARS-CoV-2 infected
non-pregnant comparators were exactly matched on the site region,
age, infection time, acute severity, and selected baseline comorbidities
including diabetes, hypertension, autoimmune or immune suppres-
sion, mental health disorders, severe obesity, and asthma with a ratio
of 1:3. Based on pregnant and matched non-pregnant cohorts, the
relative risks were further adjusted via inverse probability of treatment
weighting (IPTW) by considering a broader range baseline covariates.
The propensity scores for the two groups were calculated with the
regularized logistic regression with L2 norm with all the baseline
covariates as independent variables20,37. The stabilized IPTW was used
and extreme weights beyond their 1st or 99th percentiles were further
trimmed to reduce variability38. The balance of covariates was eval-
uated by comparing standardized mean differences (SMD), with a
difference of less than 0.1 considered to be balanced. The cumulative
incidence for the two groups was estimated with the Aalen-Johansen
model in the matched and reweighted population by considering
death as a competing risk39. The hazard ratios were estimated by the
Cox survival model in the matched and reweighted population and
two-sided 95% confidence intervals were calculated with the use of a
robust variance estimator to account for stabilized IPTW weights. The
absolute risk reduction was the difference in cumulative incidences at
180 days of follow-up between pregnant and non-pregnant groups.

The subgroup analysis was conducted by stratifying patients in
both pregnant and non-pregnant groups by self-reported race/ethni-
city, maternal age, trimesters when acquiring infection, variants
approximated by infection time [the ancestral strain wave (March

2020– September 2022), Alpha wave (October 2020–May 2021), Delta
wave (June 2021–November 2021), Omicron BA.1 and BA.2 wave
(December 2021–March 2022), and Omicron other sub-variants wave
(April 2022–October 2022)], body mass index, baseline comorbidities
(diabetes, hypertension, asthma, class III obesity), and vaccination
status. For stratified analysis by different variant periods, we further
adjusted for the infection time which was categorized into bins span-
ning every four months. To check the robustness of results in two
cohorts, the unspecific PASC diagnostic codes U099 or B948 and the
post-acute cognitive, fatigue and respiratory conditions were cross-
checked in both PCORnet and N3C cohorts, in terms of overall popu-
lation and different sub-populations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data utilized for this study was obtained from the PCORnet-RECOVER
Amazon Warehouse Services (AWS) enclave which is comprised of 40
participating sites from PCORnet. Please send all data questions or
access requests to the corresponding author, who will direct them
accordingly. All data from N3C used in this study is available through
the N3C Enclave to approved users. See https://covid.cd2h.org/for-
researchers for instructions on how to access the data. We used N3C
data from version 152 (2023-12-07).

Code availability
For reproducibility, our codes are available at Zenodo https://zenodo.
org/records/14838481 and Github https://github.com/calvin-zcx/pasc_
phenotype40. We used Python 3.9, python package lifelines-0.2666 for
survival analysis, and scikit-learn-0.2318 for machine learning models.
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