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Graph Structured Data is Everywhere

Social Networks

Biology Networks
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Graph Neural Networks

- Today’s graph neural networks (GNNs)

- GNNs built upon the in-distribution (1.D.) hypothesis fail to generalize to out-of-distribution
(OOD) environments.

- Most graph invariant learning methods heavily rely on the predefined or automatically
generated environment labels, i.e., multiple training environments.

- However, the environment labels are unavailable in most scenarios and directly annotating
or generating environment labels is impractical or inaccurate.
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Model Framework

(2 Variant Subgraph Contrastive Estimation
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Theoretical Analysis

- Theoretical Analysis

- Our method can disentangle the ground-truth invariant and variant subgraphs which is a
significant step towards OOD generalized predictions.

Theorem 1. Denote the optimal invariant subgraph generator @ that disentangles the ground-truth
invariant subgraph G; and variant subgraph G, given the input graph G, where G; satisfies Assumption 1
and denote the complement as G, = G\G,. Assume the second variance term of Eq. (5) is minimized, we
have that the first contrastive loss term is minimized iff the invariant subgraph generator ® equals ®*.




Experimental Results

Results on real-world benchmarks

Table 1. Experimental results (%) of our method and baselines. The evaluation metric is accuracy for CMNIST, CFashion, and CKuzushiji,
and ROC-AUC for MOLSIDER and MOLHIV. =+ denotes the standard deviation. The best results are in bold for each row. Our VIVACE
outperforms the baselines in all comparisons, indicating its superiority against graph distribution shifts.

Dataset Bias Methods

GCN GIN FactorGCN DiffPool DIR LDD DisC VIVACE
0.8 50.43+4.13 57.75+0.78 72.30+=1.18 73.794+0.02 9.98+0.33 64.95+1.22 82.60+0.93 | 82.71+0.74
CMNIST 0.9 2897+4.40 36.78+5.55 62.35+5.07 66.454+0.78 9.96+0.23 56.65+2.18 78.14+2.14 | 79.46+1.87
095 13.50+1.38 16.04+1.14 42.50+4.91 47.12+1.04 10.03+0.27 46.83+2.88 63.47+5.65| 64.72+4.61
0.8 63.60+0.53 64.25+0.46 61.23+1.11 62.82+0.53 13.02+1.92 63.85+1.17 66.85+1.11| 67.09+1.23
CFashion 09 57.22+0.93 58.03+0.40 53.50+1.29 57.50+0.39 12.80+1.67 64.30+0.89 65.33+4.70| 65.38+4.18
0.95 47.69+0.42 49.74+0.60 45.78+2.40 50.86+0.20 11.98+1.41 62.284+0.48 63.93+1.50| 63.96+1.27
0.8 38.45+1.10 41.83+0.78 42.87+1.19 45.461+0.65 10.35+0.32 42.384+0.33 55.53+2.29 | 55.58+1.87
CKuzushiji 0.9 28.35+0.79 30.094+0.87 32.354+2.79 36.18+0.19 10.72+0.27 38.754+0.49 48.131+2.59| 48.15+1.91
0.95 20.70+0.88 21.18+1.63 23.87+0.12 27.45+0.26 10.59+0.46 33.08+0.59 36.63+1.73| 37.01+1.67
MOLSIDER 59.62+1.82 57.61+1.48 53.32+1.75 60.21+1.55 57.74+1.63 58.83+1.62 59.31+1.87 | 62.15+1.10
MOLHIV 76.13+1.01 75.63+1.41 57.18+1.54 76.32+1.48 77.05+£0.57 7691+1.81 7697+1.03 | 78.11+0.82

Best OOD generalization
performances
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