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• Today’s graph neural networks (GNNs) 
• GNNs built upon the in-distribution (I.D.) hypothesis fail to generalize to out-of-distribution 

(OOD) environments.
• Most graph invariant learning methods heavily rely on the predefined or automatically 

generated environment labels, i.e., multiple training environments. 
• However, the environment labels are unavailable in most scenarios and directly annotating 

or generating environment labels is impractical or inaccurate.

Graph Neural Networks



Model Framework



Theoretical Analysis
• Theoretical Analysis
• Our method can disentangle the ground-truth invariant and variant subgraphs which is a 

significant step towards OOD generalized predictions.

Theorem 1. Denote the optimal invariant subgraph generator 𝛷∗ that disentangles the ground-truth 
invariant subgraph 𝐺"∗ and variant subgraph 𝐺#∗ given the input graph 𝐺, where 𝐺"∗ satisfies Assumption 1 
and denote the complement as 𝐺#∗ = 𝐺\𝐺"∗. Assume the second variance term of Eq. (5) is minimized, we 
have that the first contrastive loss term is minimized iff the invariant subgraph generator 𝛷 equals 𝛷∗.



Experimental Results
• Results on real-world benchmarks
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