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Parkinson’s disease (PD) is a serious neurodegenerative disorder marked by significant clinical and
progression heterogeneity. This study aimed at addressing heterogeneity of PD through integrative
analysis of various datamodalities.We analyzed clinical progression data (≥5 years) of individualswith
de novo PD using machine learning and deep learning, to characterize individuals’ phenotypic
progression trajectories for PD subtyping. We discovered three pace subtypes of PD exhibiting
distinct progression patterns: the Inching Pace subtype (PD-I) with mild baseline severity and mild
progression speed; the Moderate Pace subtype (PD-M) with mild baseline severity but advancing at a
moderate progression rate; and the Rapid Pace subtype (PD-R) with the most rapid symptom
progression rate. We found cerebrospinal fluid P-tau/α-synuclein ratio and atrophy in certain brain
regions as potential markers of these subtypes. Analyses of genetic and transcriptomic profiles with
network-based approaches identifiedmolecularmodules associatedwith each subtype. For instance,
the PD-R-specificmodule suggested STAT3, FYN,BECN1,APOA1,NEDD4, andGATA2 as potential
driver genes of PD-R. It also suggested neuroinflammation, oxidative stress, metabolism, PI3K/AKT,
and angiogenesis pathways as potential drivers for rapid PD progression (i.e., PD-R). Moreover, we
identified repurposable drug candidates by targeting these subtype-specificmolecularmodules using
network-based approach and cell line drug-gene signature data. We further estimated their treatment
effects using two large-scale real-world patient databases; the real-world evidence we gained
highlighted the potential of metformin in ameliorating PD progression. In conclusion, this work helps
better understand clinical and pathophysiological complexity of PD progression and accelerate
precision medicine.

Parkinson’s disease (PD) is a progressive neurodegenerative disorder
characterized by changes in both motor and non-motor functions and
involves degeneration of multiple basal ganglia and cortical related
circuits. PD is the second most prevalent neurodegenerative disorder,
impacting approximately 2–3% of individuals aged over 651,2. The
prevalence of the disease increases with advancing age, and it has
emerged as a prominent health concern for the aging population1,2. PD

is characterized by the loss of dopamine-producing (dopaminergic)
neurons in the substantia nigra and the accumulation of α-synuclein
aggregates across multiple brain circuits and regions1,2. However, the
precise etiological and pathological mechanisms underlying PD
remain elusive. Consequently, as of now, there are no approved
disease-modifying treatments known to slow, prevent, or reverse the
progression of PD3.
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In the past decades, there has been increasing recognition that “Par-
kinson’s disease” is not a single entity, but rather multiple sub-disorders
classified under the “Parkinson’s disease” term with multiple overlapping
etiologies4–6, leading to distinct progression trajectories during the PD
course. Past clinical trials have struggled to account for the considerable
heterogeneity in symptoms and progression and the pathophysiology
underlying this clinical heterogeneity7. This clinical and progression het-
erogeneity may have contributed to PD clinical trial failures7,8. Adminis-
tering the samemedication to patientswho share a PD clinical diagnosis but
possess diverse underlying pathobiological processes, is unlikely to ame-
liorate disease progression. Moreover, without proper characterization of
phenotypic variations, evaluating treatment response in clinical trials forPD
is challenging. In this context, segmenting theheterogeneouspopulationof a
disease into relatively pathologically and biologically homogeneous sub-
groups, i.e., so-called subtypes, has shown significant promise for precision
medicine anddrugdevelopment.Recently,PDresearchhasbegun toshift its
focus towards identifying PD subtypes8–11. Previous studies have utilized
various approaches for PD subtyping, such as determining subtypes based
on PD risk genotypes, categorizing subtypes based on motor (e.g., postural
instability and gait difficulty [PIGD]) or non-motor manifestations (e.g.,
mild cognitive decline subtype), or by employing emerging data-driven
methods10,11. However, despite the progress made, there is yet no consensus
on a single subtyping method that effectively aids in PD therapy10 and
accounts for disease progression12–14. One potential reason has been the
insufficient appreciation and consideration given to PD progression het-
erogeneity. Approaches that utilize longitudinal data, beginning from a
specific disease duration or disease milestone (e.g., early stage), could offer
new insights in addressing PD heterogeneity15.

Increasing efforts have been dedicated to exploring the complex
pathological and biological underpinnings of PD and its progression1,2,16,17.
These efforts have uncovered crucial mechanisms involved in PD, such as
the aggregation of α-synuclein, neuroinflammation, mitochondrial dys-
function, and oxidative stress16–18. Additionally, associations have been
established between specific genes and the disease manifestations although
notably there has been substantial heterogeneity even in monogenetic
causes of PD19–21.Most data have focusedpredominantly on the disease state
of PD, offering limited insight into the disease’s progression. A few recent
genetic studies have identified risk loci associated with motor and non-
motor progression in PD22,23. However, our understanding of the patho-
physiological mechanisms that drive the heterogeneous progression of PD
remains incomplete. This knowledge gap is an obstacle to discovering
effective disease-modifying treatments that can slow, halt, or reverse PD
progression. Further studies aimed at better understanding the complex
interplay of factors influencing PD progression are needed to achieve the
goal of developing efficacious therapeutic strategies.

In this study, our goal was to disentangle the clinical and progression
heterogeneity of PD to accelerate precision medicine. To achieve this, we
established an integrated data-driven framework that combines machine
learning, deep learning, network medicine, and statistical approaches,
enabling a multifaceted analysis of diverse data types (see Fig. 1). These
included individual-level clinical records, biospecimens, neuroimaging,
genetic and transcriptomic information, publicly available protein-protein
interactome (PPI) and transcriptomics-based drug-gene signature data24, as
well as patient-level real-world data (RWD). First, we characterized indi-
vidual’s high-dimensional phenotypic progression data to uncover PD
subtypes. This led to the identification of three pace subtypes of PD that
exhibited distinct phenotypic progression patterns and were stable over
time. Next, we identified indicative cerebrospinal fluid (CSF) and neuroi-
maging markers of the subtypes we discovered. Furthermore, by inter-
rogating genetic and transcriptomic data with network medicine
approaches, we identified subtype-specific molecular modules, revealing
potential pathophysiological underpinnings driving the subtypes with dis-
tinct progression trends. Finally, we predicted potential therapeutic candi-
dates by targeting subtype-specific molecular modules and estimated
treatment effects of the candidates using real-world evidence (RWE) via

analysis of two large-scale RWD databases. Our data suggested metformin
as a potential candidate in mitigating PD progression, as (1) it could
counteractmolecular alterations triggered in the rapid pace subtype, and (2)
it was associated with an improved PD progression based on RWE.

Results
Study cohorts
In this investigation, we adopted data of participants in the Parkinson’s
ProgressionMarkers Initiative (PPMI) study, an international observational
PD study that systematically collected clinical, biospecimen, multi-omics,
and brain imaging data of participants25. Our analysis included 406 de novo
PD participants (PD diagnosis within the last 2 years and untreated at
enrollment) in the PPMI cohort, comprising 140 (34.5%) women and 266
(65.5%) men, with an average age of 59.6 ± 10.0 years at PD onset; 188
healthy control (HC) volunteers, comprising 67 (35.6%) women and 121
(64.4%) men; and 61 participants who had dopamine transporter scans
without evidence of dopaminergic deficit (SWEDD), comprising 23 (37.7%)
and38 (62.3%)men (see SupplementaryTable 1). Specifically,we developed
a deep learning model to capture PD phenotypic progression trends using
over 5-year longitudinal clinical assessments of the de novo PD, HC, and
SWEDD participants. Clustering analysis was conducted based on the
learned progression profiles among the de novo PD participants to derive
subtypes. We further examined individual’s neuroimaging, CSF, genetic,
and transcriptomic data to identify subtype-specific biomarkers and
molecularmodules. To demonstrate robustness of ourmethod in capturing
PD progression trends to identify subtypes, we replicated our deep learning
model among participants in the Parkinson Disease Biomarkers Program
(PDBP)26.More details of participants included in this study canbe found in
the “Methods” and Supplementary Table 1.

Discovery of three pace subtypes of de novo PD
We used five-year longitudinal records of individuals in over 140 items of
diverse motor and non-motor assessments (see Supplementary Table 2).
We built a deep learning model, termed deep phenotypic progression
embedding (DPPE), for holistically modeling such multidimensional,
longitudinal progression data of the participants (see Fig. 1g). The DPPE
extended our previous work27, integrating a Long Short-Term Memory
(LSTM)8,13 network with an autoencoder architecture. The LSTM is a spe-
cialized deep neural network designed for multivariate time sequence data
analysis28,29. Specifically, DPPE had two components: (1) an encoder that
used a LSTM to receive the longitudinal clinical data of each participant as
input, capturing his/her phenotypic progression profile, and map it into a
compact embedding vector; and (2) conversely, a decoder that employed
another LSTM to unpack this compact embedding vector to reconstruct the
individual’s raw input data. In this way, the DPPE was trained in an
unsupervised manner by minimizing the difference between the input raw
data and the reconstructed output. For training DPPE, we leveraged data of
de novo PDs, HCs, and SWEDD individuals in the PPMI (see Supple-
mentary Table 1). The trained model can generate a machine-readable
embedding vector for each individual, encoding his/her phenotypic pro-
gressionprofile.More details of theDPPEmodel can be found in Fig. 1g and
“Methods” section.

Next, we conducted cluster analysis based on the DPPE-learned
embedding vectors of individuals to identify PD subtypes. We used the
agglomerative hierarchical clustering (AHC) algorithm with Euclidean
distance calculation and Ward linkage criterion, because it has demon-
strated to be robust to different types of data distributions30. An issue of
cluster analysis is how todetermine the optimal cluster number. To this end,
we considered (1) cluster separation in the dendrogram produced by the
AHC, (2) 18 cluster structuremeasurements using the ‘NbClust’ software31,
(3) cluster separation in the 2-dimensional (2D) space based on the
t-distributed stochastic neighbor embedding (t-SNE) algorithm32, and (4)
clinical interpretations of clusters.Usingourmethod, three distinct subtypes
were identified (see Supplementary Fig. 1 and Supplementary Note 1). The
subtypes’ demographics and clinical characteristics at baseline and follow-
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Fig. 1 | A diagram illustrating the present analysis. a Collecting longitudinal
clinical data from the Parkinson’s Progression Markers Initiative (PPMI) and Par-
kinson’s Disease Biomarkers Program (PDBP) cohorts and conducting necessary
data cleaning and preprocessing. b Development of a deep phenotypic progression
embedding (DPPE) model to learn a progression embedding vector for each indi-
vidual, which encodes his/her PD symptomprogression trajectory. cCluster analysis
with the learned embedding vectors to identify PD subtypes, each of which reveal a
unique PD progression pattern. d Identifying CSF biomarkers and imaging markers
the discovered PD subtypes. e Construction of PD subtype-specific molecular
modules based on genetic and transcriptomic data, along with human protein-

protein interactome (PPI) network analyses, using network medicine approaches.
f In silico drug repurposing based on subtype-specific molecular profiles and vali-
dation of drug candidates’ treatment efficiency based on analysis of large-scale real-
world patient databases, i.e., the INSIGHT and OneFlorida+ . gArchitecture of the
DPPE model. Specifically, DPPE engaged two Long-Short Term Memory (LSTM)
units—one as encoder receiving an individual’s longitudinal clinical records and
compacting them into a low-dimensional embedding space; while another taking the
individual’s embedding vector to reconstruct the original clinical records. DPPEwas
trained by minimizing the reconstruction difference.
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Table 1 | Demographics and baseline clinical characteristics by subtypes within the PPMI cohort

Variables Subtype PD-I
(inching pace)

Subtype PD-M (moder-
ate pace)

Subtype PD-R
(rapid pace)

P valuea Post hocb P value
adjustedc

# of participants 145 207 54 – – –

Age at onset, year, mean (SD) 58.1 (9.9) 59.4 (10.0) 64.4 (8.6) <0.001** III vs. rest –

Sex male, N (%) 67 (46.2) 155 (74.9) 44 (81.5) <0.001** – –

Race white, N (%) 140 (96.6) 196 (94.7) 50 (92.6) 0.422 – –

Symptom duration, month,
mean (SD)

0.593 (0.682) 0.546 (0.742) 0.667 (0.752) 0.526 – –

Genetic risk scored, mean (SD) −0.009 (0.004) −0.009 (0.004) −0.01 (0.004) 0.615 – 0.879

Family history, N (%) 140 (96.6) 196 (94.7) 50 (92.6) 0.711 – –

Education history group, N (%) – –

<12 years 10 (6.9) 9 (4.4) 7 (13.0) 0.102 – –

12–16 years 90 (62.1) 132 (63.8) 26 (48.2)

>16 years 45 (31.0) 66 (31.9) 21 (38.9)

Motor manifestations

MDS-UPDRS Part II, mean (SD) 5.2 (3.7) 5.7 (4.2) 7.9 (4.4) <0.001** III vs. rest <0.001**

MDS-UPDRS Part III, mean (SD) 19.5 (8.8) 20.7 (8.4) 24.8 (9.6) <0.001** III vs. rest 0.005*

H&Y Stage, mean (SD) 1.55 (0.51) 1.54 (0.49) 1.70 (0.49) 0.093 – 0.378

Schwab and England score,
mean (SD)

93.9 (5.9) 93.2 (5.6) 90.9 (5.7) 0.005* III vs. rest 0.004*

Tremor score, mean (SD) 0.46 (0.32) 0.50 (0.31) 0.55 (0.34) 0.14 – 0.252

PIGD score, mean (SD) 0.22 (0.25) 0.20 (0.19) 0.34 (0.26) <0.001*** III vs. rest <0.001**

Motor phenotype, N (%)

Tremor 98 (67.6) 154 (74.4) 33 (61.1) 0.235 – –

Indeterminate 18 (12.4) 22 (10.6) 6 (11.1)

PIGD 29 (20.0) 31 (15.0) 15 (27.8)

Non-motor manifestations

MDS-UPDRS Part I, mean (SD) 5.2 (4.2) 5.4 (3.8) 6.6 (4.4) 0.076 – 0.034

Hallucination, mean (SD) 0.01 (0.12) 0.03 (0.18) 0.04 (0.19) 0.467 – 0.304

Apathy, mean (SD) 0.18 (0.51) 0.21 (0.48) 0.20 (0.49) 0.82 – 0.657

Pain, mean (SD) 0.67 (0.83) 0.72 (0.83) 0.65 (0.84) 0.806 – 0.426

Fatigue, mean (SD) 0.56 (0.71) 0.67 (0.79) 0.74 (0.84) 0.272 – 0.058

Sleep, mean (SD)

Epworth sleepiness score 4.9 (3.4) 6.0 (3.1) 6.4 (3.8) 0.001** I vs. rest 0.002*

REM sleep behavior dis-
order score

3.4 (2.4) 4.2 (2.7) 5.1 (2.9) <0.001** 1 vs. rest <0.001**

Sleep phenotype, missing = 1, N (%)

REM sleep behavior disorder
positive

38 (26.2) 84 (40.8) 26 (48.2) 0.003 – –

REM sleep behavior disorder
negative

107 (73.4) 122 (59.2) 28 (51.8)

QUIP (Impulse control disorders) 0.27 (0.62) 0.31 (0.64) 0.17 (0.46) 0.284 – 0.360

Geriatric depression scale 2.26 (2.79) 2.23 (2.801) 2.87 (2.41) 0.212 – 0.078

Depression phenotype, missing = 1, N (%)

Normal 125 (86.2) 181 (87.9) 42 (77.8) 0.295 – –

Mild 9 (6.2) 17 (8.3) 8 (14.8)

Moderate 9 (6.2) 7 (3.4) 4 (7.4)

Severe 2 (1.4) 1 (0.5) 0 (0)

State trait anxiety index, mean (SD)

State subscore 32.3 (10.8) 33.2 (9.9) 33.2 (9.5) 0.716 – 0.318

Trait subscore 31.8 (10.3) 32.7 (8.8) 32.4 (9.7) 0.713 – 0.107

SCOPA autonomic questionnaire, mean (SD)

Gastrointestinal (up+down) 1.81 (1.93) 2.1 (1.95) 3.13 (2.35) <0.001** III vs. rest <0.001*

Urinary 3.88 (2.63) 4.21 (2.89) 5.41 (7.45) 0.040 I vs. III 0.198
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upwere detailed in Table 1 and Supplementary Tables 3 and 4, respectively.
Subtype-specific averaged symptom progression trajectories and annual
progression rates in terms of each single clinical assessment – as estimated
by linear mixed effect models (adjusting for age, sex, and levodopa
equivalent dose (LED) usage at visit)—were illustrated in Fig. 2a and
summarized in Table 2, respectively. The specific characteristics of each
subtype were elaborated upon below.

The Rapid Pace subtype (PD-R), marked by rapid symptom pro-
gression, consisted of 54 (13.3%) individuals (see Fig. 2a and Tables 1, 2).
Compared to other subtypes, PD-R had more males (N = 44 [81.5%]) with
the highest average age at PD onset (64.4 ± 8.6 years). Individuals of PD-R
experiencedmore severemotor symptoms at baseline, as indicated byMDS-
UPDRS Parts II and III and the Schwab and England scale, as well as more
non-motor problems, especially cognitive impairment (see Table 1).
Remarkably, PD-R was associated with the most rapid annual progression
rates in most motor and non-motor symptoms among the three subtypes.
For instance, compared to other subtypes, PD-R exhibited greater annual
progression rates in motor assessments including MDS-UPDRS Part II
(1.98/year, 95% CI [1.52, 2.44], P < 0.001) and Part III (3.08/year, 95% CI
[2.12, 4.03],P < 0.001), and Schwab andEngland score (−3.89/year, 95%CI
[−4.93, −2.85], P < 0.001). PD-R also showed the greatest annual increase
rate regarding the overall non-motor function, measured by MDS-UPDRS

Part I (1.70/year, 95% CI [1.53, 1.88], P < 0.001). Rapid progression rates
were also observed in specific non-motor functions in PD-R such as sleep
(e.g., Epworth sleepiness score and REM sleep behavior disorder), mood
(e.g., State trait anxiety index and Geriatric depression scale), autonomic
problem (Scales for Outcomes in Parkinson’s Disease autonomic ques-
tionnaire), and cognitive performance (e.g., MoCA) (see Fig. 2a and
Table 2).

The Inching Pace subtype (PD-I), characterized by mild baseline
symptoms andmild symptomprogression, encompassed145 participants
(35.7%) (see Fig. 2a and Tables 1 and 2). Compared to others, PD-I had a
relatively lower proportion ofmen (46.2%,N = 67) and a younger age at PD
onset (58.1 ± 9.9 years). In addition, individuals of PD-I exhibited milder
motor and non-motor symptoms at baseline. This was substantiated by
their lower scores on the Movement Disorders Society—Unified Parkin-
son’s Disease Rating Scale (MDS-UPDRS) Parts II and III, and their less
severe sleep and cognitive impairments (see Table 1). Furthermore, PD-I
demonstrated the most gradual PD progression among all subtypes, indi-
cated by the lowest annual progression rates in most PD symptoms esti-
mated by the linear mixed effect models (see Fig. 2a and Table 2).
Specifically, the progression rates of overall motor symptoms were low in
MDS-UPDRS Part II (0.42/year, 95%CI [0.24, 0.60], P < 0.001) and Part III
(1.03/year, 95% CI [0.62, 1.43], P < 0.001), and Schwab and England score

Table 1 (continued) | Demographics and baseline clinical characteristics by subtypes within the PPMI cohort

Variables Subtype PD-I
(inching pace)

Subtype PD-M (moder-
ate pace)

Subtype PD-R
(rapid pace)

P valuea Post hocb P value
adjustedc

Cardiovascular 0.39 (0.68) 0.51 (0.86) 0.52 (0.66) 0.309 – 0.316

Thermoregulatory 0.46 (0.87) 0.47 (0.84) 0.24 (0.72) 0.19 – 0.340

Pupillomotor 0.35 (0.58) 0.42 (0.64) 0.50 (0.79) 0.289 – 0.182

Skin 0.69 (0.88) 0.68 (0.91) 0.83 (0.96) 0.53 – 0.243

Sexual 4.47 (6.48) 3.43 (5.68) 4.48 (6.71) 0.233 – 0.629

Total (sum all) 12.04 (8.39) 11.81 (8.32) 15.11 (11.16) 0.044 II vs. III 0.020

Cognitive function, mean (SD)

MoCA-visuospatial 4.6 (0.8) 4.5 (0.8) 4.4 (0.8) 0.23 – 0.271

MoCA-naming 3.0 (0.2) 2.9 (0.3) 2.9 (0.4) 0.043 I vs. III 0.135

MoCA-attention 5.8 (0.5) 5.8 (0.6) 5.7 (0.7) 0.532 – 0.393

MoCA-language 2.7 (0.6) 2.5 (0.7) 2.6 (0.7) 0.013* I vs. II 0.011*

MoCA-delayed recall 3.7 (1.3) 3.3 (1.4) 2.9 (1.6) <0.001** I vs. rest 0.043

MoCA total score 27.9 (2.0) 27.0 (2.4) 26.7 (2.4) <0.001** I vs. rest 0.004*

Benton judgment of line
orientation

13.0 (2.1) 12.9 (2.1) 12.1 (2.2) 0.036 III vs. rest 0.020

HVLT-total recall 25.5 (4.6) 24.3 (5.1) 22.0 (4.7) <0.001*** III vs. rest 0.023

HVLT-delayed recall 8.8 (2.4) 8.3 (2.5) 7.2 (2.5) <0.001** III vs. rest 0.016

HVLT-discrimination recognition 10.1 (2.3) 9.7 (2.5) 8.5 (2.9) <0.001** III vs. rest 0.572

HVLT-retention 0.9 (0.2) 0.8 (0.2) 0.8 (0.2) 0.072 – 0.073

LNS 11.4 (2.7) 10.3 (2.4) 9.5 (2.8) <0.001*** I vs. rest <0.001**

Semantic fluency 52.1 (12.1) 48.3 (10.5) 41.3 (11.4) <0.001*** All comparisons <0.001**

Symbol digit test 47.0 (8.6) 44.6 (9.0) 40.7 (9.9) <0.001*** All comparisons <0.001**

Cognitive phenotype, missing = 7, N (%)

Normal 135 (97.8) 200 (96.6) 41 (75.9) <0.001** – –

MCI 2 (1.4) 4 (1.9) 8 (14.8)

Dementia 1 (0.7) 3 (1.5) 5 (9.3)

HVLTHopkins Verbal Learning Test, LNS letter-number sequencing,MCImild cognitive impairment,MDS-UPDRSMovement Disorders Society–revised Unified Parkinson’s Disease Rating Scale,MoCA
Montreal Cognitive Assessment, PIGD postural instability and gait disorder, PPMI the Parkinson’s Progression Markers Initiative, SCOPA Scales for Outcomes in Parkinson’s Disease.
aP values were calculated using ANOVA (for continuous variables) and χ2 test (for categorical variables) where appropriate.
bPost hoc analysis was performed using the Tukey HSD test when the ANOVA P value < 0.05.
cANCOVA was used to calculate p values (for continuous variables) adjusting for age, sex, and levodopa equivalent daily dose.
dGenetic risk scores were calculated based on 90 PD-related loci reported in the latest Genome wide association study33.
Multiple correction was conducted by controlling false discovery rate (FDR). * FDR adjusted P value < 0.05; ** FDR adjusted P value < 0.01; *** FDR adjusted P value < 0.001.
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Fig. 2 | Progression patterns of the three PD subtypes within the PPMI cohort.
a Averaged progression trajectories in clinical manifestations by subtypes, with
shading indicating standard error of the mean (SEM). b Sankey diagrams showing
evolution patterns of motor phenotypes (tremor dominant, indeterminate, and
PIGD) by subtypes. c Sankey diagrams showing evolution patterns of cognition

phenotypes (normal cognition,MCI, and dementia) by subtypes. d Sankey diagrams
showing evolution patterns of mood phenotypes (normal, mild depression, mod-
erate depression, and severe depression) by subtypes. e Sankey diagrams showing
evolution patterns of sleep phenotypes (REM sleep behavior disorder [RBD]
negative and positive) by subtypes.
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(−0.98 /year, 95% CI [−1.26, −0.69], P < 0.001). Non-motor symptoms
also progressed at amoderate rate, for example,MDS-UPDRSPart I of PD-I
increased at a low rate of 0.54 (95% CI [0.45, 0.62], P < 0.001).

TheModerate Pace subtype (PD-M), characterized bymild baseline
symptoms and moderate symptom progression, included 207 (50.9%)

individuals (see Fig. 2a and Tables 1, 2). This subtype had a higher pro-
portion of men (N = 155 [74.9%]) compared to PD-I, and these individuals
presented with an average age of 59.4 ± 10.0 years at PD onset. Although
individuals of PD-M exhibited mild motor and non-motor symptoms at
enrollment, mixed with PD-I, they demonstrated worse clinical symptoms

Table 2 | Annual progression rates in clinical manifestations and CSF biomarkers by subtypes assessed by linear mixed effects
models within the PPMI cohort

Variable Subtype PD-I (inching pace) Subtype PD-M (moderate pace) Subtype PD-R (rapid pace)

β P value β P value β P value

Motor manifestations

UPDRS-Part II 0.42 (0.24, 0.60) <0.001*** 1.02 (0.88, 1.16) <0.001*** 1.98 (1.52, 2.44) <0.001***

UPDRS-Part III 1.03 (0.62, 1.43) <0.001*** 2.07 (1.74, 2.40) <0.001*** 3.08 (2.12, 4.03) <0.001***

H&Y Stage 0.07 (0.05, 0.09) <0.001*** 0.09 (0.08, 0.10) <0.001*** 0.15 (0.10, 0.20) <0.001***

Schwab and England score −0.98 (−1.26, −0.69) <0.001*** −1.73 (−1.98, −1.48) <0.001*** −3.89 (−4.93, −2.85) <0.001***

Tremor score 0 (−0.02, 0.01) 0.917 0.03 (0.02, 0.04) <0.001*** 0 (−0.03, 0.02) 0.842

PIGD score 0.04 (0.02, 0.05) <0.001*** 0.06 (0.04, 0.07) <0.001*** 0.19 (0.13, 0.24) <0.001***

Non-motor manifestations

UPDRS-Part I 0.54 (0.45, 0.62) <0.001*** 0.88 (0.80, 0.96) <0.001*** 1.70 (1.53, 1.88) <0.001***

Hallucination 0.02 (0.01, 0.03) <0.001*** 0.03 (0.02, 0.04) <0.001*** 0.11 (0.06, 0.16) <0.001***

Apathy 0.01 (−0.01, 0.03) 0.219 0.05 (0.03, 0.07) <0.001*** 0.12 (0.06, 0.18) <0.001***

Pain 0.03 (0, 0.06) 0.026* 0.06 (0.04, 0.09) <0.001*** 0.14 (0.10, 0.18) <0.001***

Fatigue 0.05 (0.02, 0.07) <0.001*** 0.08 (0.06, 0.11) <0.001*** 0.18 (0.13, 0.23) <0.001***

Sleep

Epworth sleepiness score 0.17 (0.05, 0.30) 0.008* 0.49 (0.37, 0.60) <0.001*** 1.07 (0.79, 1.35) <0.001***

REM sleep behavior disorder 0.18 (0.09, 0.28) <0.001*** 0.27 (0.19, 0.34) <0.001*** 0.14 (−0.01, 0.32) 0.076

QUIP (Impulse control disorders) 0.02 (−0.01, 0.04) 0.232 0.06 (0.03, 0.08) <0.001*** 0.02 (−0.02, 0.06) 0.332

Geriatric depression scale −0.12 (−0.21, −0.02) 0.014* 0.11 (0.04, 0.19) 0.002** 0.47 (0.25, 0.69) <0.001***

State trait anxiety index

State subscore −0.53 (−0.83, −0.24) <0.001** −0.02 (−0.27, 0.22) 0.851 0.81 (0.24, 1.40) 0.008*

Trait subscore −0.32 (−0.58, −0.02) 0.020* 0.16 (−0.07, 0.39) 0.172 1.09 (0.50, 1.69) <0.001**

SCOPA autonomic questionnaire

Gastrointestinal 0.28 (0.19, 0.36) <0.001*** 0.31 (0.25, 0.37) <0.001*** 0.39 (0.25, 0.54) <0.001***

Urinary 0.12 (0.04, 0.20) 0.004* 0.28 (0.17, 0.38) <0.001*** 0.34 (−0.07, 0.76) 0.111

Cardiovascular 0.05 (0.02, 0.09) 0.002** 0.07 (0.04, 0.09) <0.001*** 0.21 (0.13, 0.29) <0.001***

Thermoregulatory 0.02 (−0.02, 0.06) 0.254 0.06 (0.03, 0.09) <0.001*** 0.07 (0.02, 0.12) 0.017*

Pupillomotor 0.02 (0, 0.05) 0.057 0.04 (0.02, 0.06) <0.001*** 0.07 (0.02, 0.13) 0.006

Skin 0.03 (0.00, 0.07) 0.051 0.10 (0.07, 0.13) <0.001*** 0.14 (0.06, 0.23) 0.002**

Sexual 0.14 (−0.08, 0.37) 0.216 0.37 (0.21, 0.53) <0.001*** 0.69 (0.30, 1.07) 0.001**

Total 0.68 (0.42, 0.94) <0.001*** 1.23 (0.97, 1.47) <0.001*** 1.88 (1.15, 2.61) <0.001***

Cognitive function

MoCA 0.05 (−0.02, 0.13) 0.170 −0.09 (−0.17, −0.02) 0.018* −0.99 (−1.32, −0.67) <0.001***

Benton judgment of line orientation 0.02 (−0.04, 0.08) 0.548 −0.06 (−0.12, −0.01) 0.026* −0.27 (−0.41, −0.13) <0.001**

HVLT-total recall 0.22 (0.05, 0.38) 0.006* 0.03 (−0.10, 0.17) 0.674 −0.98 (−1.24, −0.72) <0.001***

HVLT-delayed recall 0.11 (0.04, 0.19) 0.005* 0.01 (−0.06, 0.08) 0.735 −0.55 (−0.74, −0.34) <0.001***

HVLT-discrimination recognition 0.23 (0.14, 0.32) <0.001*** 0.16 (0.09, 0.23) <0.001*** 0.05 (−0.14, 0.25) 0.602

HVLT-retention 0 (0, 0.01) 0.206 0 (0, 0) 0.575 −0.05 (−0.07, −0.03) <0.001***

LNS −0.10 (−0.17, −0.02) 0.017* −0.10 (−0.17, −0.04) 0.002** −0.48 (−0.68, −0.28) <0.001***

Semantic fluency 0.25 (−0.11, 0.61) 0.183 −0.23 (−0.47, 0.01) 0.058 −1.46 (−2.07, −0.84) <0.001***

Symbol digit test 0.34 (−0.04, 0.71) 0.081 −0.12 (−0.37, 0.12) 0.335 −1.23 (−1.90, −0.56) <0.001**

For each variable, we fitted a linearmixed effectmodel for eachPD subtype, specifying time (year) as the explanatory variable of interest. For all models, individual variationwas included as a randomeffect,
and age, sex, and levodopa equivalent daily dose were included as covariates. The annual progression rate of a clinical assessment was obtained as the estimated as β (95% CI) of time.
Multiple correction was conducted by controlling false discovery rate (FDR). * FDR adjusted P value < 0.05; ** FDR adjusted P value < 0.01; *** FDR adjusted P value < 0.001.
HVLTHopkins Verbal Learning Test, LNS Letter-number sequencing,MDS-UPDRSMovement Disorders Society–Unified Parkinson’s Disease Rating Scale,MoCAMontreal Cognitive Assessment,PIGD
postural instability and gait disorder, PPMI the Parkinson’s Progression Markers Initiative, SCOPA Scales for Outcomes in Parkinson’s Disease.
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since the second year of follow-up when compared to PD-I (see Supple-
mentaryTables 3, 4).Notably, compared to thePD-I, PD-Mdisplayed faster
(generally moderate level) progression rates in most clinical manifestations
(see Fig. 2a and Table 2). In terms of overall motor symptoms, the MDS-
UPDRSPart II score showed an annual increase of 1.02 (95%CI [0.88, 1.16],
P < 0.001), the MDS-UPDRS Part III score had an annual increase of 2.07
(95%CI [1.74, 2.40], P < 0.001), and the Schwab and England score showed
an annual change of −1.73 (95% CI [−1.98, −1.48], P < 0.001). For non-
motor symptoms, for instance, MDS-UPDRS Part I exhibited an estimated
annual increase of 0.88 (95% CI [0.80, 0.96], P < 0.001).

We further investigated PD clinical phenotype alterations over time
across our identified subtypes. Here, we examined motor phenotypes (tre-
mor dominant [TD], indeterminate, and PIGD) and non-motor pheno-
types including cognition (normal cognition/mild cognitive impairment/
dementia), REM sleep behavior disorder [RBD] (positive/negative), and
depression (non/mild/moderate/severe depression) using Sankey diagrams
(see Fig. 2b–e). Overall, the individuals of PD-R had an increasing risk of
developing more advanced phenotypes. These included PIGD (Fig. 2b),
cognitive dysfunction (mild cognition impairment [MCI] and dementia)
(Fig. 2c), and moderate-to-severe depression (Fig. 2d). Individual of PD-I
and PD-Mwere likely to had stable phenotypes throughout the PD course.

The subtypes were reproducible in the PDBP cohort. Following the
same procedure above based on clinical variables sharedwith PPMI, we also
obtained the three-cluster structure using clinical progression data of early
PD individuals in the PDBP cohort (see Supplementary Note 1). Clinical

characteristics at baseline and follow-up, and PD symptom progression
profiles of these re-identified subtypes closely mirrored those uncovered in
our primary analysis using the PPMI cohort (see Supplementary Figs. 2, 3
and Tables 5–8). These demonstrated the reproducibility and robustness of
our subtyping approach and validated the pace subtypeswe identified in the
PPMI cohort.

Discovery of CSF biomarkers of the PD pace subtypes
We assessed cerebrospinal fluid (CSF) biomarkers among the identified
subtypes at baseline and identified potential indicators of the pace subtypes
(see Fig. 3a and Supplementary Table 9). While the phosphorylated tau (P-
tau) and total tau (T-tau) levels differentiated each subtype fromHCs, these
biomarkers were not effective at differentiating among the subtypes. The P-
tau/α-synuclein ratio might be the most efficacious biomarker for distin-
guishing among the three subtypes at baseline. Furthermore, the amyloid
beta-42 (Aβ-42)/P-tau and Aβ-42/T-tau ratios showed potential in differ-
entiating PD-R (rapid progression) from the other two subtypes. However,
they faced challenges when attempting to distinguish PD-M against PD-I.
This echoed the similarity in clinical manifestations of the two subtypes at
baseline (see Fig. 2 and Tables 1 and 2).

Discovery of imaging biomarkers of the PD pace subtypes
We examined brain atrophy measured by alterations of cortical
thickness and white matter volume (WMV) across 34 brain regions of
interest (ROIs) defined by the Desikan-Killiany atlas (averaged over

Fig. 3 | CSF biomarkers and neuroimaging markers of the identified subtypes.
a CSF biomarkers by PD subtypes. On each box plot, the central mark indicates the
median value and the bottom and top edges of the box indicate the interquartile
range (IQR) with whiskers covering the most extreme values within 1.5 × IQR.
b Regions showing significant signals in 1-year brain atrophy between a pair of

subtypes. 1-year brain atrophy was measured by cortical thickness and white matter
volume from 34 region of interests (ROIs), defined by the Desikan-Killiany atlas
(averaged over the left and right hemispheres). Color density denotes significance in
terms of -log10(P).
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the left and right hemispheres) within the first year after baseline. In
Fig. 3b, we marked in red the ROIs where atrophy measures sig-
nificantly differentiated each pair of PD subtypes (P < 0.05), with color
intensity reflecting the significance level, i.e., -log10(P). We observed
that reduction of WMV may be more useful than that of cortical
thickness in differentiating the subtypes. Specifically, compared to
PD-I, PD-M had significantly higherWVM reduction in certain ROIs,
such as rostral middle frontal, superior frontal, precentral, post-
central, middle and inferior temporal, fusiform, lingual, para-
hippocampal gyri, superior parietal, cuneus, and pericalcarine, and
cortical thickness atrophy in the posterior cingulate. Compared to PD-
M, PD-R had more WVM reduction in rostral middle frontal gyrus
and pars triangularis as well as cortical thickness reduction in para-
central gyrus. Compared to PD-I, PD-R had higherWVM reduction in
multiple ROIs including rostral middle frontal, pars triangularis, pars
opercularis, caudal middle frontal, superior frontal, paracentral,
fusiform, and parahippocampal gyri, as well as cortical thickness of the
paracentral gyrus. Together, these results indicated that increased
WVM atrophy at earlier stage could serve as potential markers for the
pace subtypes with distinct progression patterns.

Discovery of genetic components of the PD pace subtypes
We conducted genetic data analyses to identify genetic factors asso-
ciated to each PD subtype. Given the limited sample size, which makes
a genome-wide association study (GWAS) unfeasible, we focused on
90 PD-related single-nucleotide polymorphisms (SNPs) reported in
the latest GWAS study33 and apolipoprotein E (APOE) alleles, a known
risk factor of AD. Similar to a previous study34, we utilized the
hypergeometric tests to identify variants enriched in each subtype (see
“Methods”). Our data suggested certain SNPs that could potentially be
associated with each PD subtype (see Supplementary Fig. 4). Since
impact of single genetic factors (i.e., SNPs) is low, we further con-
ducted network-based analysis to amplify the genetic signals. We first
mapped the subtype-associated SNPs to potential causal genes, lead-
ing to a list of genetic associated genes for each subtype. Next, in a
human protein-protein interactome (PPI) network we built (see
“Methods”), we located these genetic associated genes along with their
connected PD contextual genes to construct a sub-network as the
genetic molecular module for each subtype. The PD contextual genes
were obtained through single nucleus RNA sequence (snRNA-seq)
data from dopamine neurons. More details can be found in the
“Methods” section.

We successfully identified genetic molecular module for each subtype
(see Fig. 4a andSupplementary Fig. 5). For instance, 17 geneswere identified
as potential genetic associated genes of PD-R. Among these, 14 (CNTNAP1,
TRIM40, RETREG3, FYN, MBNL2, ATP6V0A1, STAT3, BECN1, BAG6,
HLA-DRB1, HLA-DRB5, HLA-DQB1, SIPA1L2, and PRRC2A) directly
connected to snRNA-seq-derived PD contextual genes in the PPI network,
thus constructing a genetic molecular module of PD-R, as depicted in Fig.
4a. Among the genes identified in themodule was the signal transducer and
activator of transcription 3 (STAT3), which transmits signals for the
maturation of immune system cells. In microglia, STAT3 is known to
influence the expression of inflammatory genes35. FYN is a member of the
protein tyrosine kinase oncogene family, which plays a critical role in cell
communication and signaling pathways, particularly in the nervous system.
FYN can promote STAT3 signaling as part of proinflammatory priming of
microglia36. BECN1 (beclin 1) regulates autophagy, which clears toxic pro-
teins such as α-synuclein aggregates in brain. LRRK2 was found as a hub
node in the modules of PD-I and PD-M. This was supported by previous
evidence that mutated LRRK2 is likely to be associated with lower pro-
gression rate of PD37. Finally, pathway enrichment analyses pinpointed
prominent pathways enriched in the three subtypes (see Fig. 4b and Sup-
plementary Fig. 5b, d). For instance, some notable pathways that were
associated with the PD-R include neuroinflammation (immune system-
related pathways), oxidative stress, metabolism (insulin receptor signaling

and Type I diabetes pathways), and the Alzheimer’s disease (AD) pathway.
Top-ranked pathways for each subtype can be found in Fig. 4b and Sup-
plementary Fig. 5b, d.

Discovery of transcriptomic profiles of the PD pace subtypes
We next investigated the transcriptomic changes associated with each PD
subtype using the whole blood bulk RNA-seq data in the PPMI cohort (see
“Methods”). Differential gene expression analyses, comparing each subtype
with HCs, identified 2176, 2376, and 2305 differentially expressed genes
(DEG, adjusted P < 0.05) for the PD-I, PD-M, and PD-R subtypes,
respectively (see Supplementary Fig. 6).

Drawing on the DEGs of each subtype and PPI network we built as
input, we utilized ourGenome-wide Positioning Systems network (GPSnet)
algorithm38 to identify transcriptomic molecular modules specific to each
subtype (see “Methods”). Our analysis relied on the notion that a subtype-
specific molecular module is a set of genes which are (1) densely inter-
connected within the PPI network and (2) differentially expressed in the
specific subtype. We identified three distinct molecular modules for PD-I,
PD-M, and PD-R, consisting of 211, 213, and 240 genes, respectively (see
Supplementary Figs 7–9). Taking PD-R as an example, we found several
genes of interest within the module of the subtype (see Supplementary
Fig. 9). For instance, the module gene E2F1, a member of the E2F family of
transcription factors, has been previously linked to neuronal damage and
death39,40. The module gene apolipoprotein A1 (APOA1) produces the
APOA1 protein, a major protein component of high-density lipoprotein
(HDL) in the blood. A previous PPMI cohort study41 has revealed the
association between plasma APOA1 level with age at PD onset and motor
symptom severity. Another module gene, NEDD4, promotes removal of α-
synuclein via a lysosomal process inhumancellswhichmayhelp resist PD42.
Furthermore, the GATA binding protein 2 (GATA2) has demonstrated its
crucial role in neuronal development, specifically influencing the cell fate
determination of catecholaminergic sympathetic neurons and modulating
the expression of endogenous neuronal α-synuclein43. Pathway enrichment
analyses were conducted based on the subtype-specific modules and sug-
gested pathways enriched in each subtype (see Fig. 4c-d and Supplementary
Fig. 10). Again, taking PD-R as an example, Fig. 4c illustrated a sub-network
of its transcriptomic molecular module. The phosphoinositide-3-kinase/
protein kinase B (PI3K/AKT), angiogenesis, T cell receptor signaling, and
senescence pathways may play a role in rapid PD progression, i.e., PD-R.
Top-ranked pathways in each subtype can be found in the Fig. 4c, d and
Supplementary Fig. 10.

A classification model for distinguishing the PD pace
subtypes early
The identified PD pace subtypes demonstrated clear progression trends
within the PD course (over 5 years). To gain more prognostic insights, we
built a classificationmodel for separating the pace subtypes at early stage. To
build themodel,weused individual-level demographics, genetic data, aswell
as clinical assessments, CSF biomarkers, and brain atrophy measures col-
lected within the first year after baseline. We leveraged a cascade
framework44 consisting of two base random forest classifiers: one separating
PD-R from the others and another distinguishing PD-I and PD-M (see
Supplementary Fig. 11). As shown in the figure, themodelwas very effective
in separating PD-R from the other two subtypes, attaining an area under the
receiver operating characteristics curve (AUC) of 0.87 ± 0.05. While dis-
tinguishing PD-I and PD-M was challenging due to their similar clinical
characteristics at baseline, the model still achieved acceptable performance
with an AUC of 0.74 ± 0.07.

Discovery of PD pace subtype-based repurposable drug
candidates
We next sought to identify potential treatments to slow or halt PD pro-
gression by targeting the subtype-specific molecular bases. To achieve this,
we used transcriptomics-based drug-gene signature data in human cell lines
from the Connectivity Map (CMap) database24. We evaluated each drug’s
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potential therapeutic effects for preventing PD progression by assessing its
ability to reverse dysregulated gene expression levels of the subtype-specific
molecular modules (see “Methods”). More specifically, we used gene set
enrichment analysis (GSEA) to compute an enrichment score (ES) with
permutation tests for each tested drug45,46. We chose ES > 3 andQ < 0.05 as
the cutoffs to prioritize potential drug candidates (see “Methods” for more
details). In total, we investigated 1,309drugs from theCMap, resulting in 49,
65, and207 candidates (ES > 3 andQ < 0.05) basedonmolecularmodules of
the PD-I, PD-M, and PD-R, respectively.

Particularly, drug candidates predictedby targetingPD-R-specific gene
module fell into fourteen pharmacological categories (according to Ana-
tomical Therapeutic Chemical [ATC] code), including agents for the ner-
vous and cardiovascular systems, immunomodulating agents, etc. The top-
ranked drug candidates for PD-R were highlighted in Fig. 5a. Of note, our
predictions included three US Food and Drug Administration (FDA)-
approved drugs for PD treatment, including biperiden, amantadine, and
levodopa. This demonstrated that our method can predict effective medi-
cation for PD. In addition, our data suggested some potential repurposable
drug candidates. For instance, ambroxol47, an FDA-approved drug for
respiratory disorders was predicted to be potentially useful for PD-R.
Ambroxol has shown promise as a potential disease-modifying treatment

for PD in a phase II, single-center, double-blind, randomized placebo-
controlled trial48. Guanabenz, another drug prioritized for PD-R, is tradi-
tionally used for hypertension treatment. Guanabenz has been found to
reduce 6-hydroxydopamine (6-OHDA)-induced cell death in ventral
midbraindopaminergic neurons in culture, and indopaminergic neurons in
the substantia nigra of mice49.

Real-world evidence (RWE) highlighted metformin as a promis-
ing candidate to mitigate PD progression
RWD, such as the patient’s clinical records collected fromregular healthcare
procedures, has been an important resource for gathering clinical evidence,
i.e., RWE, about the usage and potential benefits or risks of medical treat-
ment. RWE can provide insights into how a treatment works in a broader
patient population in regular healthcare circumstances50. To gain RWE for
validating treatment effects of the identified drug candidates, we used two
large-scale, de-identified, patient-level RWD databases: the INSIGHT51,
containing clinical information of ~21.6 million patients in the New York
City and Houston as well as the OneFlorida+52, covering ~17 million
patients in Florida, ~2 million in Georgia, and ~1 million in Alabama. We
focused on five drugs based on subject matter expertise and a combination
of multiple factors including: (1) the strength of network-based prediction
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(ES score >3 andQ value < 0.05); (2) sufficient data for the target of interests
(we required the tested drug to be taken by more than 100 patients in the
RWD database, see “Methods”); (3) pharmacokinetics profiles; and (4)
knowledge of functional data from the literature (for instance, we paid
attention to drugs that have been reported to interact with PD-related
pathways).

To evaluate treatment effects of the tested drugs, we conducted trial
emulation based on our computational trial emulation framework53 (see
“Methods” and Supplementary Fig. 12). Specifically, for each emulated trial,
we built its treated group as the set of eligible patientswho received a specific
tested drug after PD initiation. Subsequently, we can formulate a control
group as the set eligible patients who received alternative medications (i.e.,
those falling under the same ATC level 2 class as the tested drug, excluding
the tested drug itself), through 1:1 nearest-neighbormatching. A propensity
score method was used to learn empirical treatment assignment given the
baseline covariates and an inverse probability of treatment weighting was
used to balance the treated and control groups54. We created 100 emulated
trials for each tested drug and excluded drugs which had less than 10
balanced trials.We finally estimated drug treatment effects for the balanced
trials using the Cox proportional hazard models55. Following a previous
study56, treatment efficiency was measured as the reduced risk to develop
PD-related outcomes, including falls (a proxy of advanced motor impair-
ment and dyskinesia relevant to PD progression) and dementia. More
details of this analysis can be found in the “Methods” section and Supple-
mentary Fig. 12.

Using the eligible PD patient population within both INSIGHT and
OneFlorida+ data, we were able to create sufficient (≥10) successfully
balanced emulated trials for the five tested drugs. Metformin, an FDA-

approved anti-diabetic medication, emerged as the most promising candi-
date for potentially preventing PD progression (see Fig. 5). Specifically,
within the INSIGHT data, the usage of metformin was associated with 15%
reduced likelihood of developing dementia (hazard ratio [HR] = 0.85, 95%
CI [0.83, 0.88],P value < 0.001) aswell as 14% reduced likelihood of onset of
falls (HR = 0.86, 95%CI [0.79, 0.94],Pvalue < 0.001), compared to theusage
of alternative drugs (see Fig. 5b). Similarly, in the OneFlorida+ data, met-
formin usage was associated with 29% reduced likelihood of developing
dementia (HR = 0.71, 95% CI [0.69, 0.73], P value < 0.001) as well as 22%
reduced likelihood of onset of falls (HR = 0.78, 95% CI [0.76, 0.80], P
value < 0.001) compared to the alternativemedicationusage (see Fig. 5d).Of
note, we noticed a discrepancy in the therapeutic signals (i.e., HRs) of
metformin between the INSIGHT andOneFlorida+ data. This may be due
to the variations in healthcare settings and population diversity within the
two databases. However, what stands outmore significantly is that our data,
drawn from the two independent real-world healthcare databases, con-
sistently indicate that the use of metformin post-PD diagnosis may play a
role in mitigating the progression of both motor and cognitive manifesta-
tions throughout the course of PD.

PDpatientswith early cognitive impairment are likely a subpopulation
of PD-R (see Fig. 2c). We further examined the drug candidates’ treatment
effects in this probable PD-R population. Specifically, we defined the
probablePD-Ras (1) patients diagnosedwithPD, and (2)with any cognitive
deficit diagnosis within the first year following PD initiation but prior to
initiation of the tested drug. Under such settings, we repeated the trial
emulation. We found that metformin could still be a good candidate for
preventing PD progression within this population, and its treatment effi-
ciency increased compared to that within the general PD population (see
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Drug NT HR (95% CI) P value

Ascorbic Acid 1054 1.10 (1.08, 1.12) <0.001

Amitriptyline 206 1.00 (0.92, 1.09) 0.976

Ketoconazole 643 0.69 (0.67, 0.70) <0.001

Lidocaine 4130 0.62 (0.59, 0.64) <0.001

Metformin 1066 0.85 (0.83, 0.88) <0.001

Drug NT HR (95% CI) P value

Ascorbic Acid 1365 0.67 (0.65, 0.69) <0.001

Amitriptyline 209 0.72 (0.64, 0.81) 0.002

Ketoconazole 683 1.10 (1.07, 1.14) <0.001

Lidocaine 4130 0.96 (0.95, 0.97) <0.001

Metformin 1163 0.86 (0.79, 0.94) <0.001

INSIGHT, All PD patients, Dementia outcome INSIGHT, All PD patients, Fall outcome

Enrichment Score
Q < 0.05

Drug

Ascorbic Acid
Amantadine
Ambroxol
Amitriptyline
Biperiden
Clozapine
Guanabenz
Imipramine
Ketoconazole
Levodopa
Lidocaine
Metformin
Myricetin
Naringenin
Pentamidine
Pentoxifylline
Pioglitazone
Piperine
Progesterone
Quercetin
Rosiglitazone
Tacrolimus

PD-I PD-M PD-R

Drug NT HR (95% CI) P value

Ascorbic Acid 180 0.76 (0.75, 0.78) 0.002

Amitriptyline 28a - -

Ketoconazole 79a - -

Lidocaine 562 0.75 (0.72, 0.78) <0.001

Metformin 195 0.78 (0.74, 0.82) 0.002

Drug NT HR (95% CI) P value

Ascorbic Acid 518 0.77 (0.74, 0.79) <0.001

Amitriptyline 42a - -

Ketoconazole 165 1.03 (0.92, 1.10) 0.564

Lidocaine 1277 0.84 (0.83, 0.86) <0.001

Metformin 365 0.78 (0.75, 0.80) <0.001

INSIGHT, Probable subtype PD-R, Dementia outcome INSIGHT, Probable subtype PD-R, Fall outcome

b

c

a

Drug NT HR (95% CI) P value

Ascorbic Acid 1017 0.96 (0.94, 0.98) 0.002

Amitriptyline 206 0.88 (0.81, 0.94) 0.002

Ketoconazole 460 0.73 (0.71, 0.74) <0.001

Lidocaine 1916 0.47 (0.47, 0.48) <0.001

Metformin 714 0.71 (0.69, 0.73) <0.001

OneFlorida+, All PD patients, Dementia outcome

Drug NT HR (95% CI) P value

Ascorbic Acid 1082 0.73 (0.71, 0.74) <0.001

Amitriptyline 160 0.91 (0.85, 0.97) 0.008

Ketoconazole 449 0.96 (0.92, 1.00) 0.074

Lidocaine 1841 0.60 (0.59, 0.61) <0.001

Metformin 740 0.78 (0.76, 0.80) <0.001

OneFlorida+, All PD patients, Fall outcome

Drug NT HR (95% CI) P value

Ascorbic Acid 241 0.95 (0.93, 0.97) <0.001

Amitriptyline 35a - -

Ketoconazole 125b - -

Lidocaine 378b - -

Metformin 176 0.69 (0.67, 0.71) <0.001

OneFlorida+, Probable subtype PD-R, Dementia outcome

Drug NT HR (95% CI) P value

Ascorbic Acid 473 0.97 (0.94, 1.00) 0.094

Amitriptyline 43a - -

Ketoconazole 198 0.49 (0.46, 0.53) <0.001

Lidocaine 601 0.81 (0.77, 0.86) 0.002

Metformin 300 0.60 (0.58, 0.63) <0.001

OneFlorida+, Probable subtype PD-R, Fall outcome

d

e

Fig. 5 | Identified repurposable drug candidates for preventing PD progression
by targeting subtype-specific molecular changes. a Gene set enrichment analysis
(GSEA) based on subtype-specific gene modules with bulk RNA-seq data of indi-
viduals and transcriptomics-based drug-gene signature data in human cell lines
identified repurposable drug candidates for different PD pace subtypes. Treatment
effect estimation using the INSIGHT data within the broad PD population (b) and

probable PD-R population (c). Treatment effect estimation using the OneFlorida+
data within the broad PD population (d) and probable PD-R population (e). aThe
drug doesn’t have sufficient patient data (<100) for analysis. bThe drug does not have
sufficient balanced emulated trials (<10). NT indicates the number of eligible PD
patients who received the tested drug after PD initiation.
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Fig. 5b–e).Within the INSIGHTdata, the usage ofmetforminwas observed
to be associated with 22% reduced likelihood of dementia (HR = 0.78, 95%
CI [0.74, 0.82], P value = 0.002) as well as associated with 22% reduced
likelihood of fall events (HR = 0.78, 95% CI [0.75, 0.80], P value < 0.001)
compared to the non-metformin alternative drug usage (see Fig. 5c).
Similarly, within the OneFlorida+ data, the usage of metformin was asso-
ciated with 31% reduced likelihood of dementia (HR = 0.69, 95% CI [0.67,
0.71], P value < 0.001) and with 40% reduced likelihood of fall events
(HR = 0.60, 95% CI [0. 58, 0. 63], P value < 0.001) compared to the alter-
native medication usage (see Fig. 5e)

Discussion
The heterogeneous nature of PD progression has been widely recognized,
yet it remains incompletely deciphered6–8. In this investigation, we con-
ducted comprehensive analyses of various types of data to study PD pro-
gression, including longitudinal clinical data, CSF biospecimen,
neuroimaging, genetic data, and transcriptomic data of individuals, publicly
available PPI data and transcriptomics-based drug-gene signature data in
cell lines (CMap), and two large-scale patient-level RWD databases
(INSIGHT and OneFlorida+ ). To this end, we employed machine learn-
ing, deep learning, network medicine, and RWD-based trial emulation
techniques.

Overall, our findings in this study—not only the discovery of pace
subtypes with distinct progression patterns, but also the identification
of differentiated CSF biomarker levels, atrophy in different brain
regions, and distinct molecular modules associated with these sub-
types—provided evidence supporting the existence of different
pathophysiologic mechanisms driving different PD subtypes, leading
to differentiated PD progression trajectories. This highlighted the
necessity of treating PD subtypes as unique sub-disorders within
clinical practice, where our pace subtypes could inform patient stra-
tification andmanagement. Additionally, we have built a classification
model that can effectively distinguish the pace subtypes early, based
on demographic, genetic, and clinical data gathered within the first-
year post-baseline (see Supplementary Fig. 11). This model could
serve as a valuable tool in clinical settings, enabling the swift identi-
fication of subtypes for newly diagnosed patients, thereby facilitating
prompt and precise patient stratification andmanagement. Lastly, this
study, through subtype-specific in silico drug repurposing, has iden-
tified potential therapeutic candidates (e.g., metformin), underscoring
the importance of developing subtype-specific drug treatments for

PD. This tailored approach could revolutionize how PD is treated,
offering more personalized and potentially more effective therapeutic
strategies.

Conventional PD subtyping algorithms typically rely on a priori
hypotheses focusing on single-domain information (e.g., tremor) and have
resulted in clinical subtypes of PD10. Notable examples included the motor
subtypes such as tremor dominant (TD), akinetic-rigid (AR), and postural
instability and gait disorder (PIGD). Recent data-driven methods have
become increasingly popular in subtyping complexdiseases such as PD, due
to their hypothesis-free nature that allows unbiased investigation of vast and
complicated clinical data to identify subtypes. Compared to the previous PD
subtyping systems, our PD subtyping approach has remarkable advantages
(see Fig. 6). First, unlike the conventional approaches thatmaybebiaseddue
to researcher’s knowledge, our subtyping algorithm was completely data-
driven and hypothesis-free. Second, while the importance of subtype ana-
lysis in studying PD heterogeneity has been acknowledged8–11, the debate
persists on whether the subtypes represent truly distinct entities or different
stages within the same progression trajectory of the disease10,57, particularly
as recent cohort studies have demonstrated that the conventional clinical
subtypes were unstable over time (see Fig. 6)12,13. Additionally, prior data-
drivenmethodsweremainly basedon individual’s data collectedat a specific
time point (e.g., the baseline visit). This limited their capacities to accurately
capture the evolving patterns of PD progression to address subtype
instability over time. In contrast, our approach leveraged deep learning to
model high-dimensional, longitudinal (over 5 years) clinical progression
data of individuals, capturing the intrinsic phenotypic progression profiles
of individuals to detect subtypes. Therefore, individuals’ subtype member-
shipswere inherently stable over time,with each subtype reflecting a distinct
PD progression pattern (in Fig. 2 and Table 2).

A remarkable finding is the PD-R subtype, which had worse symptom
severities at baseline and, more importantly, experienced the most rapid
motor and non-motor symptom progression paces throughout the PD
course. A recent data-driven study58 has reported a “diffuse malignant”
clinical subtype of PD, which also exhibited poor baseline clinical mani-
festations and faster progression during follow-up. However, the progres-
sion speed of this “diffuse malignant” subtype was only marginally faster
than the others andwas noted in only a few clinical assessments, such as the
Schwab and England score, MoCA, and global composite outcome. In
contrast, PD-R demonstrated the greatest progression rates in a diverse
spectrum of motor and non-motor manifestations among the PD popula-
tion, estimated by the linear mixed effects models that considered multiple

Fig. 6 | Comparisons of the identified pace subtypes with conventional motor
subtypes and prior data-driven subtypes. Notably, our subtyping algorithm was
completely data-driven and hypothesis-free. In addition, since ourmethodmodeled

individuals’ phenotypic progression profile for PD subtyping, the identified subtypes
demonstrated unique progression patterns and, importantly, were stable over time.
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covariates (age, sex, levodopa equivalent daily dose usage at visits)
(see Table 2 and Supplementary Table 8). Additionally, when compared to
other subtypes, PD-R showed a more consistent trend to shift from TD
towardPIGD (see Fig. 2b). This demonstrated that PD-R canprogress faster
than the others, but also indicated that the TD andPIGDmotor phenotypes
aremore likely to represent different stages of PD. Similarly, PD-Rwasmore
likely to develop cognitive and behavioral abnormalities, including MCI
and/or dementia as well as depression (see Fig. 2c-d).

Another two subtypes, i.e., PD-I and PD-M, exhibited comparable
symptom severities at baseline (see Fig. 2a and Table 1). Nevertheless,
importantly, substantial differences in clinical manifestations, both motor
and non-motor, became apparent after two years from baseline (see Fig. 2a,
Table 1, and Supplementary Tables 3 and 4). PD-M manifested a much
faster annual progression inmost clinical manifestations compared to PD-I
(see Table 2). The findings suggested that even when individuals with PD
initially presented with similar symptom severities at baseline, their pro-
gression can vary in pace, leading to distinct trajectories andprognoses. This
also supported the hypothesis that subtypes defined relying on baseline data
can display fluctuations in symptom severity and/or outcomes during
follow-up12–14. Our findings underscore the importance of thoroughly
modeling individual’s symptom progression trajectories when attempting
to identify PD subtypes.

Cognitive impairment-related pathology may play a role in driving
rapid PD progression, i.e., PD-R. Firstly, compared to the other subtypes,
PD-R had worse cognitive performances in numerous clinical assessments
and demonstrated an 8 to 10-fold higher prevalence of cognitive impair-
ment at baseline (see Table 1 and Fig. 2c). Secondly, the studied PD parti-
cipantshadnoADdiagnosis at baseline and follow-upvisits, yet our analysis
of baseline CSF biomarkers suggested that several AD-type biomarkers
could serve as potential early indicators for the PD pace subtypes we
identified (see Fig. 3a). More specifically, the CSF P-tau/α-synuclein ratio
appeared to be a promising biomarker for differentiating the three PD
subtypes from one another at baseline, although it had limited capacity to
distinguish these subtypes againstHC participants. Aside from the P-tau/α-
synuclein ratio, we didn’t identify any additional CSF biomarkers that could
effectively separate the PD-I and PD-M at baseline, which was consistent
with the mixed symptom severities of the two subtypes at baseline. Other
AD-related biomarkers including CSF Aβ-42, Aβ-42/P-tau ratio, and Aβ-
42/T-tau ratio distinguished the PD-R from the PD-I and PD-M subtypes.
Our findings are supported by the prior study59, which suggested that
although the AD biomarkers alone are not helpful in diagnosing PD, they
could improve prognostic evaluation. This emphasizes the critical role that
the primary hallmarks of AD, the amyloid and tau pathologies, may have in
the progression of PD. Last, we also observed that early (within thefirst year
after baseline) structural atrophy in certain brain regions responsible for
cognitive functions may be potential markers of the PD pace subtypes (see
Fig. 3b). Some notable markers we found included frontal lobe regions
including rostral middle frontal, pars triangularis, caudal middle frontal,
superior frontal gyri, as well as fusiform and parahippocampal gyri.

Analyses of individuals’genetic and transcriptomicprofiles armedwith
network medicine approaches led to the identification of subtype-specific
molecular modules and biological pathways. Despite the commonalities in
certain pathways across subtypes, each subtype was associated with unique
pathways. This suggested that there might be unique pathophysiological
underpinnings that drive the distinct progression patterns (i.e., the pace
subtypes) observed in PD (see Supplementary Figs 5e and 10c). In parti-
cular, the molecular modules of PD-R suggested the potential roles of
neuroinflammation, oxidative stress, metabolism, and AD pathways, along
with PI3K/AKT and angiogenesis pathways in rapid PD progression (see
Fig. 4).Neuroinflammation, a crucial factor inPDpathogenesis, involves the
chronic inflammatory response in the brain, particularly the activation of
microglia60. Upon activation, microglia release pro-inflammatory cytokines
and reactive oxygen species (ROS). Neuroinflammation-related ROS pro-
duction subsequently leads tooxidative stress andneuronal damage, thereby
playing a significant role in PD’s pathogenesis and progression60,61. The

PI3K/AKTpathway is fundamental to various physiological processes, such
as cell survival, growth, proliferation, andmetabolism. It also plays a crucial
role in modulating the mammalian target of rapamycin (mTOR), a pivotal
regulator of autophagy—an essential cellular process involved in degrading
and recycling damaged or unnecessary cell components62,63. Previous evi-
dence has indicated that disruptions in the PI3K/AKT pathway impairs
autophagy, leading to ineffective elimination of abnormal and toxic protein
aggregates, contributing toneuronal death57,58. In addition, angiogenesis, the
process of forming new blood vessels from existing ones, has been impli-
cated in PD pathologies64. Aberrant angiogenesis has been associated with
blood-brain barrier (BBB) dysfunction. This dysfunction may lead to
changes in BBB permeability, potentially permitting neurotoxic substances
to enter the brain65. It could also trigger neuroinflammation and abnormal
immune responses, both contributing to neurodegeneration65.

Using in silico drug repurposing approaches, we prioritized drug
candidates that could target specific PD subtypes (see Fig. 5). Metfor-
min, a traditional type 2 diabetes (T2D) medication, stood out as a
potentially promising candidate for repurposing. Our data demon-
strated the potential effect of metformin in counteracting molecular
changes triggered in PD-R (ES = 4.44, P value < 0.001). Furthermore,
RWE gained from large-scale individual-level RWD substantiated our
findings, showing thatmetformin usage was associated with a decreased
risk of advanced PD outcomes including dementia (cognitive impair-
ment) and falls (advanced motor dysfunction). Notably, a stronger
treatment effect was observed within the surrogate PD-R subtype
population (INSIGHT data: dementia, HR = 0.78, 95% CI [0.74, 0.82],
P = 0.002; falls, HR = 0.78, 95% CI [0.75, 0.80], P value < 0.001; One-
Florida+ : dementia, HR = 0.69, 95% CI [0.67, 0.71], P value < 0.001;
falls, HR = 0.60, 95% CI [0.58, 0.63], P value < 0.001) compared to that
within the broader PD population (INSIGHT data: dementia, HR =
0.85, 95%CI [0.83, 0.88], P value < 0.001; falls, HR = 0.86, 95%CI [0.79,
0.94], P value < 0.001; OneFlorida+ : dementia, HR = 0.71, 95% CI
[0.69, 0.73], P value < 0.001; falls, HR = 0.78, 95% CI [0. 76, 0. 80], P
value < 0.001). Metformin, known for its efficacy in reducing hepatic
glucose release and augmenting the body’s insulin sensitivity, has
recently also been highlighted for its potential neuroprotective role in
neurodegenerative disorders including PD. This is supported by a
growing body of in vitro and in vivo studies of PD66–68. First, known as a
strong AMPK (5’-adenosine mono-phosphate-activated protein
kinase) activator, metformin’s neuroprotective effects may be primarily
attributable to its role in activating the AMPK signaling pathway69,70.
Past research found that AMPK can suppressmicroglial activation, thus
potentially mitigating neuroinflammation69. Recent investigations
employing animal models revealed metformin’s ability to reduce
microglial cell numbers, modify microglial activation pathways, and
attenuate both inflammasome activation and the accumulation of ROS
in microglia71,72. In addition, metformin has been found to modulate
PI3K/AKT activity73,74. Enhanced activations of AMPK and PI3K/AKT
can amplify autophagy, which aids in the removal of toxic proteins like
α-synuclein, thereby preventing dopaminergic neuronal death73,74.
Finally, animal model studies have found that metformin may induce
both angiogenesis and neurogenesis in the brain under different
experimental conditions75–77. In conclusion, the neuroprotective effect
ofmetformin against the PD-R subtype (rapid PDprogression) could be
attributed to its ability to inhibit neuroinflammation, enhance PI3K/
AKT activity for efficient α-synuclein clearance, and stimulate angio-
genesis. Our data further supported the potential of metformin in
treating PD, especially the rapid pace PD subtype patients, but also
indicated the potential of our method in accelerating precision medi-
cine approaches towards identifying therapeutics that reduce PD
progression.

Limitations of this work should also be acknowledged. First of all, the
PPMI and PDBP cohorts collected abundant individual-level phenotypic,
molecular, and imaging data, enabling comprehensive multi-modal, long-
itudinal analysis of PD; however, the majority of participants in the two
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cohorts are white with high education level (see Supplementary Table 1).
Such a skewedpopulationmayweaken the generalizabilityof ourfindings to
the entire PD population.

We modeled longitudinal phenotypic data to capture the hetero-
geneous progression procedure of PD. We acknowledge, however, that the
variability in individuals’ health conditions at baseline could influence the
modeling of PD progression, and this factor was not fully considered in the
present analysis. Therefore, there is an unmet need to perform comparative
analyses with data from individuals with more advanced stages of PD at
baseline, such as those diagnosed for over three years in PDBP. This may
help us better understand how PD evolves from its early to later stages and
refine our progression models accordingly. Data incompleteness may also
impactPDprogressionmodeling and subtype identification.To address this
issue, we excluded individuals who had insufficient longitudinal informa-
tion and used a combination of the last observation carried forward (LOCF)
and next observation carried backward (NOCB) methods78 to impute
missing values while retaining longitudinal consistency. We also imputed
the variables missing all values along the timeline of an individual based on
median values of the population (see “Methods”). Such procedures help
mitigate themissing value issue butmight also includeunexpectednoise and
bias in analysis.

Our omics data analyses, aiming to explore potential biological
mechanisms driving the subtypes, may have limitations. First, instead of
exhaustively examining the genetic factors whole genome-wide, our genetic
examinationwas selective, focusing on knownPD-related variants reported
in the latest GWAS study33 andAPOE alleles. Such a targeted strategy could
mitigate the issues caused by the small impact sizes of single genetic variants
and limited sample size, which become particularly evident in subtype-
specific investigations. Additionally, utilization of a network medicine
strategy with the PPI network allowed us to extend our genetic and tran-
scriptomic insights on the genome-wide scale. However, it remains possible
that key genes pivotal to specific PD subtypes may have been missed. Sec-
ond, our study was potentially limited to the analysis of whole-blood
transcriptomics. Exploring transcriptomic data from other tissues (espe-
cially the brain tissues) and CSF, as well as integrating other omics
approaches like proteomics and single-cell RNA-seq data, might yieldmore
comprehensive insights into the molecular underpinnings driving PD
progression heterogeneity. Third, potential confounding factors, such as
genetic-environmental interactions, comorbidities, and socioeconomic
status, were not adequately accounted for in our current study. These
variables require further examination in future research to clarify their
influence on PD progression. Lastly, our molecular findings, derived based
on the PPMI dataset, lack extensive validation in independent cohorts or
through functional analyses. Future studies should endeavor to corroborate
our results in molecular data from separate validation cohorts, such as the
PDBP,and employ functional analyses to further authenticate themolecular
observations.

Translating subtype findings from research cohorts (e.g., PPMI and
PDBP) toRWDto gather real-world evidence is crucial but poses significant
challenges due todata discrepancy, skewedpopulation, anddata quality.We
defined surrogate PD-R in RWDbased on its unique clinical feature of early
cognitive impairment, which may not be accurate. Future research
employing more sophisticated techniques like transfer learning, which
facilitates the transfer of knowledge across cohorts with partially over-
lapping features, is needed. In addition, RWD analysis may not be suitable
for testing drugs that have too few patient data. We were able to perform
population-based validation for metformin, as it had a large amount of
patient data available. For drugs with fewer patient data, replication of the
associations using multiple large population-based cohorts is suggested.
Moreover, our RWDanalysis cannot build causal relationships between use
of a specific medication (e.g., metformin) and beneficial clinical response of
PDorPD-R.Causalmethods, such asMendelian randomization studies79,80,
should be utilized in the future. Last, we didn’t examine the safety of the
predicted drug candidates and it must be rigorously evaluated through
dedicated studies.

Methods
Study cohorts for PD subtyping
The present study included two longitudinal PD cohorts for identifying PD
subtypes: the Parkinson’s Progression Markers Initiative (PPMI, http://
www.ppmi-info.org)25 and the Parkinson Disease Biomarkers Program
(PDBP, https://pdbp.ninds.nih.gov)26.

PPMI, launched in 2010 and sponsored by the Michael J. Fox
Foundation, is an international and multi-center observational study
dedicated to identifying biomarkers indicative of PD progression25. The
present study included the following participants in the PPMI cohorts:
de novo PD participants (diagnosed with PD within the last 2 years and
untreated at enrollment), HCs, and individuals with SWEDD (scans
without evidence of dopaminergic deficit). More information about
PPMI participants has been described elsewhere25. The PPMI study
protocol was approved by the institutional review board of the Uni-
versity of Rochester (NY, USA), as well as from each PPMI participating
site. Data used in the preparation of this article were obtained on Jun 25,
2020 from the PPMI database (www.ppmi-info.org/access-data-
specimens/download-data), RRID:SCR_006431. For up-to-date infor-
mation on the study, visit www.ppmi-info.org. This analysis used data
openly available from PPMI as well as whole exome sequencing data,
whole blood RNA-seq data, and high resolution T1-weighted 3 T
Magnetic Resonance Imaging (MRI) data, obtained from PPMI upon
request after approval by the PPMI Data Access Committee.

PDBP, established in 2012 and funded by the National Institute of
Neurological Disorders and Stroke (NINDS), is an observational study for
advancing comprehensive PD biomarker research26. The present study
included the participants with PD and HCs in the PDBP cohort. More
information about the PDBP participants has been described elsewhere26.
The study protocol for each PDBP site was approved by institutional review
board of each participating site. Data of the PDBP cohort were obtained on
Jan 26, 2021 via theAcceleratingMedicines Partnership Parkinson’s disease
(AMP-PD)Knowledge Platform (http://amp-pd.org) underAMP-PDData
Use Agreement.

Weused thePPMI cohort as thedevelopment cohort. Participantswho
had less than 1-year historical records were excluded as lack of longitudinal
information. Participants’ longitudinal clinical data were collected for
modeling PD symptom progression trajectories to produce a progression
embedding vector for each participant, using deep learning. Subtypes were
identified using the learned progression embedding vectors of participants
with PD. We used the PDBP cohort as the validation cohort. Participants
whohad less than1-yearhistorical recordswere excluded. In thePDBP, only
the early PDs (symptom duration < 3 years at enrollment) were used to re-
identify the PD subtypes. More details of the studied cohorts and data
utilization were illustrated in the Supplementary Table 1. All study parti-
cipants provided written informed consent for their participation in both
studies.

PD progression modeling for subtype identification
Clinical variables. We used participant’s longitudinal data in diverse
clinical assessments. Specifically, we used motor manifestation data
including Movement Disorders Society–revised Unified Parkinson’s
Disease Rating Scale (MDS-UPDRS) Parts II and III81 and Schwab-
England activities of daily living score, as well as non-motor manifesta-
tion data including MDS-UPDRS Part I81, Scales for Outcomes in Par-
kinson’s disease-Autonomic (SCOPA-AUT)82, Geriatric depression scale
(GDS)83, Questionnaire for Impulsive-Compulsive Disorders in Par-
kinson’s disease (QUIP)84, State-Trait Anxiety Inventory (STAI)85, Ben-
ton Judgment of Line Orientation (JOLO)86, Hopkins Verbal Learning
Test (HVLT)87, Letter-number sequencing (LNS), Montreal Cognitive
Assessment (MoCA)88, Semantic verbal-language fluency test89,
Symbol–Digit Matching (SDM)90, Epworth Sleepiness Score (ESS)91,
REM sleep behavior disorder (RBD)92, and Cranial Nerve Examination.
Usage of dopaminergic medication was transformed into levodopa
equivalent daily dose usage93.
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For the PDBP cohort, we used the clinical variables shared with the
PPMI cohort. More details of the clinical variables used for PD subtyping
can be found in the Supplementary Table 2.

Data preparation. In both the PPMI and PDBP cohorts, we extracted
clinical data at baseline and follow-up visits for each participant. In this
way, each participant was associated with a multivariate clinical time
sequence. Missing values were imputed using the combination of the last
observation carried forward (LOCF) and next observation carried
backward (NOCB) strategies which have demonstrated effectiveness in
our previous work78. In a last observation carried forward (LOCF) pro-
cedure, a missing follow-up visit value is replaced by (imputed as) that
subject’s previously observed value; similarly, in a next observation car-
ried backward (NOCB) procedure, a missing previous visit value is
replaced by (imputed as) that subject’s follow-up observed value. The
variables missing all values along the timeline of a participant were
imputed by median values of the population. To eliminate the effects of
value magnitude, all variables were scaled based on z-score, i.e.,
x̂ ¼ ðx � μÞ=σ, where, x̂ is the z-scored value, x is the original value, and μ
and σ are the mean value and standard deviation of the data.

Learning individuals’ phenotypic progression embedding vectors
using deep learning. Our goal was to identify PD subtypes, each of
which can reflect a unique PD symptom progression pattern within the
course of PD. To this end, there is the need of fully considering long-
itudinal data of individuals to derive PD subtypes. Here, we developed a
deep learning model, termed deep phenotypic progression embedding
(DPPE), which took the multivariate clinical time sequence data of each
participant as input to learn a machine-readable vector representation,
encoding his/her PD phenotypic progression trajectory over time (see
Fig. 1g). Specifically, the DPPEmodel was based on the Long-Short Term
Memory (LSTM) units28,29, a deep learning model designed for time
sequence data modeling. The LSTM unit has a “memory cell” that stores
historical information for extended periods, making it an excellent choice
for modeling disease progression using longitudinal clinical data94. The
DPPE engaged an autoencoder architecture that consisted of two com-
ponents, an encoder and a decoder, each of which is a LSTM model: (1)
the encoder took the longitudinal clinical data of each individual (i.e.,
multivariate time sequence) as input and learned a progression embed-
ding vector that encoded his/her PD symptom progression trajectory;
and (2) the decoder, with reversed architecture of the encoder, tried to
reconstruct the input time sequence of each individual based on the
embedding vector. The DPPE model was trained by minimizing differ-
ence between the input multivariate clinical time sequences and the
reconstructed ones. To enhance model training, we used data of PDs,
HCs, and SWEDDs in the PPMI cohorts. After training of the DPPE
model, we obtained a learned progression embedding vector for each
participant, encoding his/her PD progression profile.

We deployed DPPE using PyTorch (https://pytorch.org) with Python
3.6. Specifically, we used one-layer LSMT in both the encoder and decoder
in DPPE. We set the embedding size as 16. In model training, to take full
advantage of patient data, we set batch size as 1.We trained themodel using
the “Adam” optimizer in PyTorch.

Cluster analysis for subtype identification in the PPMI cohort. The
agglomerative hierarchical clustering (AHC) with Euclidean distance
calculation and Ward linkage criterion30 was applied to the individuals’
embedding vectors learned by the DPPE model. We used AHC because
that, (1) unlike other clustering methods like k-means clustering (which
requires a sphere-like distribution of the data), AHC is usually robust as
it’s not sensitive to the distribution of the data and doesn’t require an
initialization procedure (e.g., k-means) thatmay incorporate uncertainty;
(2) AHC can produce a tree diagram known as a dendrogram, visually
interpreting how the data points are agglomerated together in a hier-
archical manner and also illustrating the distances between the clusters at

different layers in the hierarchy, providing visible guidance in deter-
mining the optimal cluster number. AHC has previously shown promise
in identifying underlying patterns from clinical profiles for disease
subtyping95–97. We implemented AHC using scikit-learn (https://scikit-
learn.org/stable/) with Python 3.6.

A crucial issue of cluster analysis is the determination of cluster
number in data. To address this issue, we considered multiple criteria
to determine the optimal cluster (i.e., subtype) number in cluster
analysis based on AHC: (1) Clusters should be clearly separated in the
dendrogram produced by the AHC. (2) We selected optimal cluster
numbers suggested based on clustering measurements calculated by
the ‘NbClust’ software31, an R package for assisting a clustering
method to determine the optimal cluster number of the data. Here, we
used 18 indices provided by ‘NbClust’ to evaluate cluster structure of
the agglomerative hierarchical clustering model with Ward criterion.
The optimal cluster number was determined by the optimal value of
each index. The used indices included: Scott index, Marriot index,
TrCovW index, TraceW index, Friedman index, Rubin index, DB
index, Silhouette index, Duda index, Pseudot2 index, Beale index,
Ratkowsky index, Ball index, Ptbiserial index, Frey index, McClain
index, Dunn index, SDindex. More details of these indices were
introduced elsewhere31. (3) We calculated the 2-dimensional (2D)
representation for each individual based on his/her progression
embedding vector using the t-distributed stochastic neighbor
embedding (t-SNE) algorithm32. We then visualized individuals’
subtype memberships in the 2D t-SNE space. We expected that the
clusters, i.e., PD subtypes, could be clearly separated in the 2D t-SNE
space. (4) We also considered clinical interpretations of the subtype
results to determine the optimal cluster number.

Subtype validation in the PDBP cohort. To enhance reproducibility of
the identified subtypes, we validated them using the PDBP cohort. Spe-
cifically, we repeated thewhole procedure above in thePPMI cohort to re-
identify the subtypes in the PDBP cohort.We re-trained theDPPEmodel
to calculate individuals’ progression embedding vectors. We used data of
HCs and all participants with PD in the PDBP cohort for training the
DPPE model. PD participants in the PDBP cohort had a broad dis-
tribution of PD duration26. To align with our primary analysis in the
PPMI cohort, we used the individuals with early PD (whose PD duration
< 3 years) and performedAHCbased on their learned embedding vectors
to re-derive subtypes.

Exploring clinical characteristics of the identified subtypes
Wecharacterized the identified subtypes in twoways. First,we characterized
the subtypes by evaluating their differences in demographics and clinical
assessments at baseline as well as 2- and 5-year follow-up. For group
comparisons, we performed analysis of variance (ANOVA) for continuous
data and χ2 test for categorical data. Analysis of covariance (ANCOVA)was
also applied, adjusting for age, sex, and levodopa equivalent daily dose
(LEDD) usage. A two-tailed P value < 0.05 were considered as the threshold
for statistical significance.

Second, we estimated annual progression rates in terms of each clinical
assessment for each subtype. To accomplish this, for each variable, we fitted
a linearmixed effectmodel for eachPDsubtype, specifying time (year) as the
explanatory variable of interest. For all models, individual variation was
included as a random effect, and age, sex, and LEDD at visits were included
as the covariates. For each model, we reported the coefficient β (95% CI) of
time as annual progression rate of the specific clinical assessment, alongwith
the corresponding P value. A P value < 0.05 was considered for statistical
significance.We further utilized Sankey diagrams to visualize the transition
trends of motor phenotypes (tremor dominant and postural instability and
gait disorder [PIGD]) as well as non-motor phenotypes including cognition
(normal cognition,mild cognition impairment [MCI], anddementia), REM
sleep behavior disorder (RBDnegative or positive), anddepression (normal,
as well as mild, moderate, and severe depression).
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For above statistical analyses, multiple correction was conducted by
controlling false discovery rate (FDR).

The statistical analyseswere conducted usingR 4.3. Linearmixed effect
models were built using lme4 (https://github.com/lme4/lme4/) in R.

CSF biomarker analysis
CSF biospecimen data were obtained from the PPMI cohort. We used
baseline α-synuclein measured by enzyme-linked immunosorbent assay98,
amyloid-beta1–42 (Aβ-42), phosphorylated Tau protein at threonine 181
(P-tau), and total tau protein (T-tau) measured by INNO-BIA AlzBio3
immunoassay. Following the previous studies99,100, we also evaluatedAβ-42/
P-tau, Aβ-42/T-tau, Aβ-42/α-synuclein, P-tau/α-synuclein, T-tau/α-synu-
clein, and P-tau/T-tau levels. We conducted two-group comparisons
(subtype vs. subtype and subtype vs. HCs) for each biomarker using linear
mixed effectmodels, specifying individuals’HCorPDsubtypemembership
as the explanatory variable of interest, adjusting for baseline age and sex as
covariates. A P value < 0.05 was considered for statistical significance.
Additionally, boxplots were engaged to visualize data distributions.

Neuroimaging biomarker analysis
High resolution T1-weighted 3 TMRI data of participants were available
at baseline and follow-up in the PPMI cohort. For each individual, we
calculated 1-year brain atrophy measured by cortical thickness and
white matter volume in 34 brain regions of interests (ROIs), defined by
the Desikan-Killiany atlas (averaged over the left and right hemi-
spheres). We evaluated those measures in separating each pair of PD
subtypes. The student’s t-tests were used for two-group comparisons.
The ‘ggseg’101 in R was used to visualize the neuroimaging biomarkers
under the Desikan-Killiany atlas.

Construction of human protein-protein interactome network
We assembled commonly used human protein-protein interactome (PPI)
databases with experimental evidence and in-house systematic human PPIs
to build a comprehensive human PPI network. PPI databases we used
included: (i) kinase-substrate interactions via literature-derived low-
throughput and high-throughput experiments from Human Protein
Resource Database (HPRD)102, Phospho.ELM103, KinomeNetworkX104,
PhosphoNetworks105, PhosphositePlus106, andDbPTM3.0107; (ii) binaryPPIs
from 3D protein structures from Instruct108; (iii) binary PPIs assessed by
high-throughput yeast-two-hybrid (Y2H) experiments109; (iv) protein
complex data (~56,000 candidate interactions) identified by a robust affinity
purification-mass spectrometry collected from BioPlex V2.0110; (v) signaling
networks by literature-derived low-throughput experiments from the
SignaLink2.0111; and (vi) literature-curated PPIs identified by affinity pur-
ification followed by mass spectrometry from BioGRID112, HPRD113,
InnateDB113, IntAct114, MINT115, and PINA116. In total, 351,444 PPIs con-
necting 17,706 unique proteins are now freely available at https://alzgps.
lerner.ccf.org117. In this study,weutilized the largest connected componentof
this dataset, including 17,456 proteins and 336,549 PPIs. The PPI network
was used for network analyses of genetic and transcriptomic data for
subtype-specificmolecularmodule identification,whichweredetailedbelow.

Genetic data analysis
To explore genetic components of the PD subtypes, we analyzed genetic
data in the PPMI cohort. APOE ε2 and ε4 genotypes and genotypes of 90
PD-related risk loci33 were collected for analysis. The hypergeometric tests
were used to identify SNPs thatwere enriched in each subtypewithin thePD
population. P value from the hypergeometric analysis indicates association
of a SNP to the specific subtype34. A P value < 0.05 was considered for
statistical significance.

Single nucleus RNA-seq analysis for identifying PD
contextual genes
We utilized one set of human brain single nucleus RNA-sequencing data
collected from 12 control donors with two brain regions: cortex and

substantia nigra (SN) which included approximately 17,000 nuclei. It is
available from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/
geo/) database with accession number GSE140231. We performed the
bioinformatics analyses according to the processes described in the original
manuscript118. Each brain region was analyzed individually, and the whole
analyses were implemented with Seurat (4.0.6)119. Nuclei expressed
with ≤ 500 genes, with≥ 5%mitochondrial genes and≥ 5% ribosomal genes
were removed. Then the raw count was log-normalized and the top 2000
most variable genes were detected by function FindVariableFeatures with
selection.method = ‘vst’. Next, all samples were integrated by functions Fin-
dIntegrationAnchors using canonical correlation analysis (CCA) and Ine-
grateData with dims = 1:42 and 1:25 for cortex and substantia nigra,
separately. We then scaled the data and regressed out heterogeneity related
with ribosomal, mitochondrial content, and number of UMIs. Clustering
was performed with resolution 0.4 and 0.6 for cortex and substantia nigra,
separately. We identified dopaminergic neuron with marker genes (TH,
LMX1B, KCNJ6, NR4A2 and SLC6A3) provided by the original
manuscript118 for substantia nigra only. DEGs for dopaminergic neuron
were calculated against other cell types with MAST R package120 regarding
brain region substantia nigra, and were considered as PD contextual genes.

Construction of genetic molecular modules of the identified
subtypes
Network analysis was conducted based on the PPI network we built to
expand the genetic signals to identify subtype-specific molecular module.
For each subtype, we first selected the SNPs that were associated with the
subtype (P value < 0.05) and obtained their nearest genes and/or possible
causal genes identified through the PD GWAS Locus Browser121. The PD
GWAS Locus Browser identified causal genes for each PD risk loci, as
protein coding genes within 1Mb up and downstream of it, via integration
of diverse data resources, such as gene expression and expression quanti-
tative trait locus (eQTL) data fromdifferent tissues as well as literature. This
resulted in a list of genetic associated genes for each subtype. Then, for each
subtype, we linked its genetic associated genes with the PD contextual genes
in the PPI networkwe built. Genetic associated genes that cannot link to any
contextual genes were removed. In this way, these linked genetic associated
genes and their linked contextual genes constructed the genetic molecular
module specific to the subtype.

Transcriptomic data analysis
We performed gene expression analysis using whole blood bulk RNA-seq
data of participants within the PPMI cohort122. Genes were annotated using
UniProt123, and only protein coding genes were included for analysis. Genes
with low expression levels across all samples were excluded. Differential
gene expression analyses were performed for each subtype compared to
healthy controls using DEseq2124 in R. Age, sex, and LEDD usage were
included as covariates. An adjusted P value < 0.05 was considered for sta-
tistical significance.

Construction of transcriptomic molecular modules of the iden-
tified subtypes using GPSnet algorithm
Our GPSnet (Genome-wide Positioning Systems network)38 deman-
ded two inputs: the node (gene) scores and a background PPI network
we built above. GPSnet first set an initial gene score z(i) for each gene i
in the PPI network: for differentially expressed genes (DEGs) with Q
value ≤ 0.05, the gene scores were initialized as z ið Þ ¼ jlog2FCj, where
FC indicates fold change; for the remaining non-DEGs, z(i) = 0. After
that, a random walk with restart process was applied to smoothen the
scores for all genes in the PPI network. Next, GPSnet utilized the
following procedures to build a gene module M: It first initialized
module M only containing a randomly selected seed gene and then
expanded the module by involving genes one by one, while (1)
enhancing gene connectivity within the module and (2) improving
module level gene score. Specifically, a gene i 2 ΓM will be included
intoM (ΓM is a set of genes that interact with genes inmoduleM), if (1)
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PðiÞ≤ 0:01 (calculated with Eq. (1), indicating genes withinM densely
connect to each other after including i) and (2) SðM ∪ if gÞ > SðMÞ
(calculated with Eq. (2), indicating module-level risk score increased
after involving gene i).

P ið Þ ¼
Xdi

d¼dn

m

d

� �
N �m

di � d

� �

N

di

� � ð1Þ

SðMÞ ¼
P

j2M z j
� �� ω

� �
ffiffiffi
n

p ð2Þ

where,m denotes the number of genes in moduleM, ω denotes the average
score of all genes in the PPI network, and S(M) denotes the module-level
gene score of the moduleM.

We stopped module expansion when S(M) could or be increased or
PðiÞ≥ 0:01 by involving new genes. In this study, we repeated above pro-
ceduresmultiple (~100,000) times andobtained a collectionof rawmodules.
All rawmodules were ranked in a descending order based onmodule score.
Wegenerated thefinal genemodulesby assembling the top rankedmodules.
For each subtype, we ranGPSnet based on theDEGs of a specific subtype to
gain the transcriptomic molecular module of the subtype.

Pathway enrichment analysis
Pathway enrichment analyses were conducted based on using BioPlanet125

from Enrichr126. For each subtype, we identified pathways according to the
genetic and transcriptomic molecular modules of the subtype, respectively.
The combined score defined in Enrichr126 equaled the product of log of P
value from the Fisher’s test and z-score which characterized the departure
from the expected rank.

Building classification model of subtypes
To gainmore prognostic insights of the subtypes, we built a prognostic
model of subtypes using information collected within the first year
after enrollment. Specifically, we used candidate predictors including
demographics, 10 principal components derived from neuroimaging
biomarkers (1-year brain atrophy measured by reduction of cortical
thickness and white matter volume in 34 brain ROIs), 90 PD-related
SNPs, and clinical variables at baseline and 1-year follow-up. To
improve model practicability in separating multiple subtypes, we built
the model using a cascade framework44, which was proposed to
address multi-label classification tasks. Specifically, it contained a
sequential of multiple basic classifiers, such that in each step, it pre-
dicted a subtype from the remaining subjects that will be sent to the
successor basic classifier. We used random forest as the basic classifier
and the model was trained using a fivefold cross-validation strategy.
We used the receiver operating characteristics curve (ROC) and area
under ROC curve (AUC) to measure prediction performance of
our model.

Subtype-specific in silico drug repurposing
ConnectivityMap (CMap) database.We downloaded transcriptomics-
based drug-gene signature data in human cell lines from the Connectivity
Map (Cmap) database24. The Cmap data used in this study contained
6100 expression profiles relating 1309 compounds24. TheCMap provided
a measure of the extent of differential expression for a given probe set.
The amplitude α was defined as Eq. (3) as follows:

α ¼ t � c
ðt þ cÞ=2 ð3Þ

where t is the scaled and threshold average difference value for the drug
treatment group and c is the threshold average difference value for the

control group. Therefore, anα = 0 indicates no expression change afterdrug
treatment, while an α > 0 indicates elevated expression level after drug
treatment and vice versa.

Gene set enrichment analysis (GSEA) for drug repurposing. We
applied GSEA algorithm for predicting repurposable drug candidates for
each PD subtype. The GSEA algorithm demanded two inputs: the CMap
data and a list of module genes. For each subtype, we combined the
genetic and transcriptomic molecular module to obtain a list of module
genes for this subtype. Detailed descriptions of GSEA have been illu-
strated in elsewhere38,46. Then, for each drug in the CMap database, we
calculated an enrichment score (ES) based on genes within each subtype-
specific molecular module as Eq. (4). ES represents drug potential cap-
ability to reverse the expression of the input molecular network:

ES ¼ ESup � ESdown; sgnðESupÞ≠ sgnðESdownÞ
0; else

�
ð4Þ

where ESup and ESdown were calculated separately for up- and down-
regulated genes from the subtype-specific gene module. We computed
aup=down and bup=down as

a ¼ max
1≤ j≤ s

j
s
� VðjÞ

r

� �
ð5Þ

b ¼ max
1≤ j≤ s

V j
� �

r
� j� 1

s

� �
ð6Þ

where j ¼ 1; 2; 3; . . . ; s are the genes within the subtype-specific module
sorted in an ascending order by their rank in the gene expression profiles of
the tested drug. The rank of gene jwas defined asV(j), such that 0≤VðjÞ ≤ r
with rbeing thenumberofmodule genes indrugprofile. ThenESup=down was
set to aup=down if aup=down>bup=down and was set to �bup=down if
aup=down<bup=down. Permutation tests repeated 100 times using randomly
selected gene lists consisting of the same numbers of up- and down-
regulated genes as the input subtype-specific gene module were performed
to calculate the significance of the computedESvalue. Therefore, drugswith
large positive ES values and P values ≤ 0.05 were selected.

Pharmacoepidemiologic validation with large-scale real-world
patient data
We estimated treatment effects of the identified repurposable drug candi-
dates. Overall workflow of the real-world patient data analysis can be found
in the Supplementary Fig. 12. The detailed procedures were introduced
as below.

Real-world patient data. In this study, we used two independent large-
scale real-world patient databases.
• INSIGHTClinical ResearchNetwork (CRN).The INSIGHTCRN51was

founded with and continues to be supported by Patient-Centered
Outcomes Research Institute (PCORI). The INSIGHT CRN brings
together top academic medical centers located in New York City
(NYC), including Albert Einstein School of Medicine/Montefiore
Medical Center, Columbia University and Weill Cornell Medicine/
New York-Presbyterian Hospital, lcahn School of Medicine/Mount
Sinai Health System, and New York University School of Medicine/
Langone Medical Center. This study used de-identified patient real-
world data (RWD) from the INSIGHT CRN, which contained
longitudinal clinical data of over 15 million patients in the NYC
metropolitan area. The use of the INSIGHT data was approved by the
Institutional Review Board (IRB) of Weill Cornell Medicine under
protocol 21-07023759.

• OneFlorida+ Clinical Research Consortium. OneFlorida+ Clinical
Research Consortium52 is another CRN supported by PCORI, which
includes 12 healthcare organizations and contains longitudinal and
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linked patient-level data. This study used de-identified, robust linked
patient-level RWD of 17 million patients in Florida, 2.1 million in
Georgia (via Emory), and 1.1 million in Alabama (via UABMedicine)
since 2012 and covering a wide range of patient characteristics
including demographics, diagnoses, medications, procedures, vital
signs, and lab tests. The use of theOneFlorida+ approved by the IRBof
University of Florida under protocol IRB202300639.

Eligibility criteria. Patient eligibility criteria for analysis included:
• Patients should have at least one PD diagnosis according to Interna-

tional Classification of Diseases 9th and 10th revision (ICD-9/10)
codes, including 332.0 (ICD-9) and G20 (ICD-10).

• Patient’s age was > = 50 years old at the first PD diagnosis.
• Patients who had neurodegenerative disease diagnoses before his/her

first PD diagnosis was excluded.

PD outcomes. We considered PD related outcomes including dementia
and falls (indicating advancedmotor impairment and dyskinesia), which
were defined by ICD-9/10 diagnosis codes. Drug treatment efficiencywas
defined by reducing the risk to develop the PD outcomes.

Follow-up. Each patient was followed from his/her baseline until the day
of the first PD outcome event, or loss to follow-up (censoring), whichever
happened first.

Trial emulation. We first obtained DrugBank ID of each tested drug and
translated it to RxNorm and NDC codes using the RxNav API (appli-
cation programming interface). Drugs which were used by less than 100
patients were excluded for analysis. Following Ozery-Flato et al.56, we
defined the PD initiation date of each patient as six months prior to his/
her first recorded PD diagnosis event. This accounted for the likelihood
that PD may be latently present before formal diagnosis. We defined the
index date as the beginning time of treatment of a tested drug candidate
or its alternative treatment. We also defined the baseline period as the
time interval between the PD initiation date and the index date for each
patient. We required that:
• The index date was later than the PD initiation date.
• Onset of PD outcomes were later than the index date.

Then, for each tested drug, we built an emulated trial using the fol-
lowing procedures:
1. We built its treated group as the eligible PD patients who took the

tested drug after PD initiation;
2. We built a control group as:

1. Patients who received alternative treatment of the tested drug, i.e.,
drugs froma sameAnatomicalTherapeuticChemical level 2 [ATC-
L2] classification of the tested drug, excluding the drug itself.

2. To control confounding factors, we performed the propensity score
matching as introduced below.

Propensity score matching (PSM). We collected three types of cov-
ariates at the baseline period for each patient: (1) We included 64
comorbidities including comorbidities from Chronic Conditions Data
Warehouse and other risk factors that were selected by experts53. The
comorbidities were defined by a set of ICD-9/10 codes. (2)We considered
usage of 200 most prevalent prescribed drug ingredients as covariates in
this analysis. These drugs were coded using RxNorm and grouped into
major active ingredients using UnifiedMedical Language System. (3)We
also included other covariates, including age, gender, race, and the time
from the PD initiation date to the drug index date. In total, we included
267 covariates for analysis.

For each emulated trial, we used a propensity score framework to learn
the empirical treatment assignment given the baseline covariates and used
an inverse probability of treatment weighting to balance the treated and
control groups54. For each trial, a 1:1 nearest-neighbor matching was

performed to build thematched control group54. The covariate balance after
propensity score matching was assessed using the absolute standardized
mean difference (SMD)127. For each covariate, it was considered balanced if
its SMD≤0.2, and the treated and control group were balanced if only no
more than 2%covariateswere not balanced128. To enhance robustness of the
analysis, we created 100 emulated trials for each tested drug. Tested drugs
that had <10 successfully balanced trials were excluded for analysis.

Treatment effect estimation. For each tested drug, we estimated drug
treatment effect for each balanced trial by calculating the hazard ratio (HR)
using a Cox proportional hazard model55, comparing the risk to develop a
specific outcome between the treated and control groups. We reported the
medianHRwith95%confidence intervals (CI)obtainedbybootstrapping129.
A HR < 1 indicated the tested drug can reduce risk to develop a specific
outcome and a P value < 0.05 was considered as statistically significant.

The trial emulation pipeline for treatment effect estimation was
implemented using Python packages psmpy130 for propensity score fra-
mework and lifelines131 for the Cox proportional hazard model.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
This study used data from PPMI (www.ppmi-info.org/access-data-
specimens/download-data, RRID:SCR 006431) and PDBP (https://pdbp.
ninds.nih.gov). Data from the PDBP were download from AMP-PD
Knowledge Platform (http://amp-pd.org). Information of the INSIGHT
database is available at https://insightcrn.org. Request of INSIGHTdata can
be sent via: https://nyc-cdrn.atlassian.net/servicedesk/customer/portal/2/
group/6/create/16. Information of the OneFlorida+ data is available at:
https://onefloridaconsortium.org/. Request of OneFlorida+ data can be
sent via: https://onefloridaconsortium.org/front-door/prep-to-research-
data-query/.

Code availability
Computer codes for this study are available at https://github.com/
changsu10/Parkinson-Progression-Subtyping/tree/main.
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Supplement to: Identification of Parkinson’s disease PACE subtypes and 
repurposing treatments through integrative analyses of multimodal data 
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Supplementary Note 1. Determination of optimal cluster number 

A. Subtype identification in the PPMI (development) cohort 
Using learned representation vectors of participants in the PPMI cohort, dendrogram showed 
that the 3-cluster model is the optimal fit of the agglomerative hierarchical clustering model 
(see Supplementary Figure 1). In addition, out of 18 indices in ‘NbClust’, 8 suggested 3 
clusters, 1 suggested 1 cluster, 4 suggested 2 clusters, 3suggested 4 clusters, and 2 
suggested >7 clusters. In conclusion, by considering both dendrogram and the indices, the 
optimal cluster number was 3. 
 

B. Subtype identification in the PDBP (validation) cohort 
In the PDBP validation cohort, dendrogram also showed that the 3-cluster model is the 
optimal fit of the agglomerative hierarchical clustering model (see Supplementary Figure 2). 
In addition, out of 18 indices in ‘NbClust’, 5 suggested 3 clusters, 1 suggested 1 cluster, 5 
suggested 2 clusters, and 5 suggested 4 clusters, and 1 suggested 8 clusters. In conclusion, by 
considering both dendrogram and the indices, the optimal cluster number was 3. 
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Supplementary Figures 

 
Supplementary Figure 1. Performance of hierarchical clustering in the PPMI cohort. a. 
Dendrogram of hierarchical clustering shows clear three cluster structure of PDs in PPMI 
data. b. t-Stochastic Neighbor Embedding (t-SNE) visualization of shows clear three cluster 
structure of PDs in PPMI data. 
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 4 

 
Supplementary Figure 2. Performance of hierarchical clustering in the PDBP cohort. a. 
Dendrogram of hierarchical clustering shows clear three cluster structure of PDs in the PDBP 
data. b. t-SNE visualization of shows clear three cluster structure of PDs in the PDBP data. 
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Supplementary Figure 3. Averaged symptom progression trajectories by PD subtypes in 
the PDBP cohort. PD symptom progression profiles of these re-identified subtypes closely 
mirrored those uncovered in our primary analysis within the PPMI cohort. 
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Supplementary Figure 4. Results of genetic analysis across subtypes. Enrichment analysis 
didn’t find difference in APOE ε2 and ε4 alleles, GBA and LRRK2 variants among identified 
PD subtypes (a). Signals in 90 PD-related SNPs were found to be associated with the 
identified PD subtypes (b). 
 

.
*

*

.
* *. .
**

** **

.
**.

***

.
** .

. .
* **

.

.

*

*

*
* .

*** *

.
*

*

*
.

*

Frequency Frequency Frequency 

PD-I
PD-M
PD-R
All PDs. P-value < 0.1

* P-value < 0.05
P-value < 0.001**

a

APOE !2 APOE !4

b

Fr
eq

ue
nc

y 

PD-I
PD-M
PD-R
All PDs



 7 

 
Supplementary Figure 5. Genetic molecular modules of the subtypes. a. and b. Genetic 
molecular module and pathways enriched based on genetic molecular module of the PD-I 
subtype. c. and d. Genetic molecular module and pathways enriched based on genetic 
molecular module of PD-M. e. Venn plot showing overlaps of enriched pathways among the 
three subtypes. 
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Supplementary Figure 6. Volcano plots for differential gene expression analysis. Genes 
with adjusted P value (i.e., Q value) < 0.05 were considered as differentially expressed genes 
(DEGs) in each subtype (subtype vs. healthy controls [HCs]), which were further fed to the 
GPSnet algorithm for identifying gene modules of each of the identified PD subtypes. 
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Supplementary Figure 7. Transcriptomic molecular module of the PD-I subtype 
identified based on gene expression profiles with network-based method, GPSnet. Color 
indicates log fold change in gene expression, PD-I vs. healthy control. Size of a gene 
indicates degree (number of connected genes) of the gene in the protein-protein interaction 
network. 
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Supplementary Figure 8. Transcriptomic molecular module of the PD-M subtype 
identified based on gene expression profiles with network-based method, GPSnet. Color 
indicates log fold change in gene expression, PD-M vs. healthy control. Size of a gene 
indicates degree (number of connected genes) of the gene in the protein-protein interaction 
network. 
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Supplementary Figure 9. Transcriptomic molecular module of the PD-R subtype 
identified based on gene expression profiles with network-based method, GPSnet. Color 
indicates log fold change in gene expression, PD-R vs. healthy control. Size of a gene 
indicates degree (number of connected genes) of the gene in the protein-protein interaction 
network. 
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Supplementary Figure 10. Enriched pathways based on transcriptomic molecular 
module of the subtypes. a. and b. Enriched pathways based on transcriptomic molecular 
module of the PD-I and PD-M subtypes, respectively. c. Venn plot showing overlaps of 
enriched pathways among the three subtypes. 
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Supplementary Figure 11. Classification model for separating the PD subtypes at early 
stage. Specifically, we leveraged a cascade framework consisting of two base random forest 
classifiers: one separating PD-R from the others and another distinguishing PD-I and PD-M. 
Demographics, genetic profiles, as well as clinical and MRI information within the first year 
after baseline were used as features to train the model. 
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Supplementary Figure 12. Study design of real-world patient data analysis for drug treatment effects estimation. a. Inclusion exclusion 
criteria. Within each database, we constructed a PD cohort and a probable subtype PD-R cohort as the PD patients who had cognitive 
impairment (CI) no later than 1 year after 1st PD diagnosis. b. Study pipeline of trial emulation based on real-world patient data.  
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Supplementary Tables 
Supplementary Table 1. Characteristics and utilization of the studied cohorts  
 Development cohort: PPMI Validation cohort: PDBP 
Variables HCs SWEDD PDs (de novo) HCs Early PDs Other PDs 

# of participants 188 61 406 211 210 287 
       
Demographics       

Age at onset, year, mean (SD) - - 59.6 (10.0) - 63.0 (10.0) 57.6 (10.5) 
Sex male, N (%) 121 (64.4) 38 (62.3) 266 (65.5) 100 (47.4) 120 (57.1)a 182 (63.4) 
Race white, N (%) 177 (94.1) 58 (95.1) 384 (94.6) 196 (92.9) 199 (94.8) 261 (90.9) 
Symptom duration at baseline, year (SD) - - 0.6 (0.7) - 1.0 (0.8) 8 (6.8) 
Family history (%) 6 (3.2) 15 (24.6) 61 (15) 7 (3.3) 28 (13.3) 21 (7.3)b 

Education history (%)       
        < 12 years 5 (2.7) 10 (16.4) 26 (6.4) 2 (0.9) 7 (3.3) 4 (1.4)c 

        12-16 years 110 (58.5) 34 (55.7) 248 (61.1) 141 (66.8) 131 (62.4) 169 (58.9) 

        ≥ 16 years 73 (38.8) 17 (27.9) 132 (32.5) 68 (32.2) 71 (33.8) 113 (39.4) 

       
Utilization       

Training deep progression embedding model P P P P P P 
Clustering analysis for subtype identification   P  P  

aDistribution of sex, PPMI PDs vs. PDBP early PDs, P value < 0.05 
bDistribution of symptom duration at baseline, PPMI PDs vs. PDBP other PDs, P value < 0.01 
cDistribution of education history at baseline, PMI PDs vs. PDBP other PDs, P value < 0.05 
 
HC = Healthy controls; PD = Parkinson’s disease; PDBP = Parkinson’s Disease Biomarkers Program; PPMI = the Parkinson progression marker initiative; SD = standard deviation; SWEDD = 
subjects with scans without evidence for dopaminergic deficit. 
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Supplementary Table 2. Clinical variables used for PD subtyping 
Category Data Description  PPMI PDBP 

Motor 
assessment 

MDS-UPDRS Part II1 Self-administered questionnaire of motor experiences of daily living. We used all items. X X 
MDS-UPDRS Part III1 Motor examination provided by rater. We used all items with medication “OFF”. X X 
Schwab-England activities of daily living 
score 

Measure of the abilities of individuals living with PD relative to a completely 
independent situation. X X 

Non-motor 
assessment 

MDS-UPDRS Part I1  Non-motor experiences of daily living. We used all items. X X 

Scales for Outcomes in Parkinson’s disease-
Autonomic (SCOPA-AUT)2 

The SCOPA-AUT was developed to evaluate autonomic symptoms. We used scores of 
the 7 domains, including gastrointestinal, urinary, cardiovascular, thermoregulatory, 
pupillomotor, and sexual. 

X  

Geriatric depression scale (GDS)3 Measure of depression in older adults. X  
Questionnaire for Impulsive-Compulsive 
Disorders in Parkinson’s disease (QUIP)4 

Measure of severity of symptoms and support a diagnosis of impulse control disorders 
and related disorders in PD. We used all items. X  

State-Trait Anxiety Inventory (STAI)5 The measure of trait and state anxiety. We used the STAI-Strait and STAI-State sub-
scores. X  

Benton Judgment of Line Orientation 
(JOLO)6 

A standardized measure of visuospatial judgment. We used the crude score and 
MOANS normative scores. X  

Hopkins Verbal Learning Test (HVLT)7 A memory test with six equivalent forms. X  

Letter-number sequencing (LNS) A subset of Wechsler adult intelligence scale, measuring working memory, attention, 
mental control X  

Montreal Cognitive Assessment (MoCA)8 
A screening assessment for detecting cognitive impairment. We used the visuospatial, 
naming, attention, language, delayed recall, abstraction, and verbal fluency sub-scores, 
and total MoCA score. 

X X 

Semantic verbal-language fluency test9 Assessment of semantic knowledge, retrieval ability, and executive functioning. We 
used the sub-scores in terms of animals, vegetables, and fruits.  X  

Symbol–Digit Matching (SDM)10 A neuropsychological test that examines a person’s attention and speed of processing. X  
Epworth Sleepiness Score (ESS)11 Measure of daytime sleepiness. We used all items. X X 
REM sleep behaviour disorder (RBD)12 A questionnaire for RBD. We used all items. X X 

Cranial Nerve Examination A kind of neurological examination that is used to identify problems with the cranial 
nerves. We used the 9 components.  X  

PD medication Levodopa equivalent daily dose Levodopa equivalent daily dose X  
Abbreviations: MDS-UPDRS = Movement Disorders Society–revised Unified Parkinson’s Disease Rating Scale. 
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Supplementary Table 3. 2-year follow-up clinical characteristics by subtypes in the PPMI cohort 
Variables Subtype PD-I 

(Inching Pace) 
Subtype PD-M 

(Moderate Pace) 
Subtype PD-R 

(Rapid Pace) P-valuea Post-hocb P-value 
adjustedc 

# of participants 145 207 54 - - - 
       
Motor manifestations       
MDS-UPDRS Part II, mean (SD) 6.0 (4.6) 8.2 (4.9) 12.1 (6.0) <0.001*** All comparisons <0.001*** 
MDS-UPDRS Part III, mean (SD) 23.9 (10.6) 27.1 (10.5) 33.4 (13.1) <0.001*** All comparisons <0.001** 
H&Y Stage, mean (SD) 1.7 (0.6) 1.8 (0.5) 2.1 (0.6) <0.001** III vs. rest 0.028* 
Schwab and England score, mean (SD) 90.6 (7.2) 89.0 (7.5) 83.5 (9.7) <0.001*** III vs. rest <0.001*** 
Tremor score, mean (SD) 0.5 (0.4) 0.6 (0.4) 0.6 (0.5) 0.006* I vs. II 0.030* 
PIGD score, mean (SD) 0.3 (0.3) 0.3 (0.3) 0.7 (0.6) <0.001*** III vs. rest <0.001*** 
Motor phenotype, N (%)       
    Tremor 73 (50.3) 127 (61.4) 18 (33.3) 

<0.001*** - -     Indeterminate 30 (20.7) 48 (23.2) 13 (24.1) 
    PIGD 29 (20.0) 32 (15.5) 23 (42.6) 
Non-motor manifestations       
MDS-UPDRS Part I, mean (SD) 6.8 (4.3) 7.4 (5.1) 10.7 (5.4) <0.001*** III vs. rest <0.001*** 
Hallucination, mean (SD) 0.09 (0.32) 0.05 (0.21) 0.24 (0.62) 0.002** III vs. rest 0.001** 
Apathy, mean (SD) 0.3 (0.7) 0.4 (0.7) 0.6 (0.9) 0.088 - 0.205 
Pain, mean (SD) 0.8 (0.8) 0.9 (0.9) 1.1 (1.0) 0.076 - 0.016* 
Fatigue, mean (SD) 0.6 (0.7) 0.8 (0.9) 1.2 (1.1) <0.001*** III vs. rest <0.001** 
Sleep, mean (SD)       
    Epworth sleepiness score 5.1 (3.4) 7.3 (4.1) 8.5 (4.8) <0.001*** I vs. rest <0.001** 
    REM sleep behavior disorder 3.9 (2.8) 4.7 (3.0) 5.4 (3.4) 0.006* 1 vs. III 0.007* 
Sleep phenotype, missing = 1, N (%)       
    REM sleep behavior disorder positive 45 (31.0) 92 (44.7) 30 (55.6) 0.002** - -     REM sleep behavior disorder negative 100 (69.0) 114 (55.3) 24 (44.4) 
QUIP (Impulse control disorders) , mean 
(SD) 

0.3 (0.7) 0.3 (0.7) 0.3 (0.8) 0.830 - 0.929 

Geriatric depression scale, mean (SD) 2.3 (2.8) 2.7 (3.0) 3.4 (2.6) 0.064 - 0.052 
Depression phenotype, missing = 1, N (%)       
    Normal 122 (84.1) 172 (83.5) 38 (70.4) 

0.121 - -     Mild 12 (8.3) 20 (9.7) 10 (18.5) 
    Moderate 6 (4.1) 11 (5.3) 6 (11.1) 
    Severe 5 (3.5) 3 (1.5) 0 (0) 
State trait anxiety index, mean (SD)       
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    State subscore 31.7 (10.4) 32.2 (9.3) 36.3 (11.6) 0.016*  III vs. rest 0.007* 
    Trait subscore 31.7 (10.3) 32.5 (8.8) 35.3 (10.3) 0.075 - 0.012* 
SCOPA autonomic questionnaire, mean 
(SD)       

    Gastrointestinal (up+down) 2.6 (2.3) 2.8 (2.3) 4.3 (2.6) <0.001*** III vs. rest <0.001*** 
    Urinary 4.0 (2.5) 4.7 (2.9) 6.5 (7.6) <0.001** III vs. rest 0.016* 
    Cardiovascular 0.6 (0.8) 0.7 (1.1) 0.9 (1.2) 0.083 - 0.128 
    Thermoregulatory 0.4 (0.8) 0.6 (1.0) 0.4 (0.7) 0.280 - 0.208 
    Pupillomotor 0.4 (0.7) 0.5 (0.7) 0.6 (0.8) 0.532 - 0.320 
    Skin 0.8 (1.1) 0.9 (1.0) 0.9 (1.1) 0.727 - 0.312 
    Sexual 5.0 (6.8) 4.3 (6.0) 5.8 (6.7) 0.274 - 0.559 
    Total (sum all) 13.9 (8.8) 14.4 (9.2) 19.4 (11.1) 0.001*** III vs. rest <0.001*** 
Cognitive function, mean (SD)       
    MoCA-visuospatial 4.5 (0.8) 4.3 (0.8) 3.7 (1.5) <0.001*** III vs. rest <0.001*** 
    MoCA-naming 2.9 (0.2) 2.9 (0.3) 2.9 (0.4) 0.244 - 0.363 
    MoCA-attention 5.8 (0.5) 5.6 (0.7) 5.3 (1.0) <0.001*** III vs. rest <0.001*** 
    MoCA-language 2.6 (0.5) 2.4 (0.8) 2.0 (1.0) <0.001*** All comparisons <0.001*** 
    MoCA-delayed recall 3.7 (1.5) 3.0 (1.7) 2.0 (1.9) <0.001*** All comparisons <0.001*** 
    MoCA total score 27.7 (2.4) 26.2 (2.7) 23.6 (4.4) <0.001*** All comparisons <0.001*** 
    Benton judgment of line orientation 13.3 (1.8) 12.8 (2.1) 11.4 (3.1) <0.001*** III vs. rest <0.001*** 
    HVLT-total recall 25.6 (4.7) 23.5 (5.3) 19.7 (6.1) <0.001*** All comparisons <0.001*** 
    HVLT-delayed recall 8.9 (2.5) 8.3 (2.9) 6.1 (3.4) <0.001*** III vs. rest <0.001*** 
    HVLT-discrimination recognition 11.0 (2.3) 10.7 (2.2) 9.7 (3.1) 0.005** III vs. rest 0.047 
    HVLT-retention 0.9 (0.2) 0.9 (0.2) 0.7 (0.3) <0.001*** III vs. rest 0.010* 
    LNS 11.2 (2.6) 10.2 (2.5) 8.4 (3.4) <0.001*** All comparisons <0.001*** 
    Semantic fluency 53.7 (13.4) 48.3 (11.9) 39.4 (11.2) <0.001*** All comparisons <0.001*** 
    Symbol digit test 48 (9.6) 43.9 (9.7) 38.0 (10.8) <0.001*** All comparisons <0.001*** 
Cognitive phenotype, missing = 7, N (%)       
    Normal 133 (96.4) 193 (93.2) 39 (72.2) 

<0.001*** - -     MCI 4 (2.8) 9 (4.4) 9 (16.7) 
    Dementia 1 (0.7) 5 (2.4) 6 (11.1) 
       
a P-values were calculated using ANOVA (for continuous variables) and 𝜒! test (for categorical variables) where appropriate. 
b Post-hoc analysis was performed using the Tukey HSD test when the ANOVA P-value < 0.05. 
c ANCOVA was used to calculate p-values (for continuous variables) adjusting for age and sex. 
Multiple correction was conducted by controlling false discovery rate (FDR). * FDR adjusted P-value< 0.05; ** FDR adjusted P-value< 0.01; *** FDR adjusted P-value< 
0.001. 



 19 

 
HVLT = Hopkins Verbal Learning Test; MCI = mild cognitive impairment; MDS-UPDRS = Movement Disorders Society–revised Unified Parkinson’s Disease Rating Scale; 
MoCA = Montreal Cognitive Assessment; PIGD = postural instability and gait disorder; PPMI = the Parkinson’s Progression Markers Initiative; SCOPA = Scales for 
Outcomes in Parkinson’s Disease. 
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Supplementary Table 4. 5-year follow-up clinical characteristics by subtypes in the PPMI cohort 
Variables Subtype PD-I 

(Inching Pace) 
Subtype PD-M 

(Moderate Pace) 
Subtype PD-R 

(Rapid Pace) P-valuea Post-hocb P-value 
adjustedc 

# of participants 145 207 54 - - - 
       
Motor manifestations       
MDS-UPDRS Part II, mean (SD) 5.7 (4.3) 11.1 (5.6) 16.5 (10.0) <0.001*** All comparisons <0.001*** 
MDS-UPDRS Part III, mean (SD) 23.0 (9.5) 32.5 (12.9) 38.9 (15.8) <0.001*** All comparisons <0.001*** 
H&Y Stage, mean (SD) 1.9 (0.4) 2.0 (0.4) 2.5 (0.9) <0.001*** III vs. rest <0.001*** 
Schwab and England score, mean (SD) 90.5 (6.6) 84.1 (9.3) 70.9 (23.6) <0.001*** All comparisons <0.001*** 
Tremor score, mean (SD) 0.5 (0.4) 0.7 (0.5) 0.6 (0.5) <0.001** I vs. II 0.003** 
PIGD score, mean (SD) 0.3 (0.3) 0.5 (0.4) 1.2 (1.0) <0.001*** All comparisons <0.001*** 
Motor phenotype, N (%)       
    Tremor 54 (37.2) 102 (49.3) 8 (14.8) 

0.004** - -     Indeterminate 24 (16.6) 49 (23. 7) 6 (11.1) 
    PIGD 21(14.5) 56 (27.1) 20 (37.0) 
Non-motor manifestations       
MDS-UPDRS Part I, mean (SD) 6.5 (4.7) 9.8 (5.6) 14.3 (9.0) <0.001*** All comparisons <0.001*** 
Hallucination, mean (SD) 0.1 (0.3) 0.2 (0.4) 0.4 (1.1) 0.002** III vs. rest 0.005** 
Apathy, mean (SD) 0.2 (0.5) 0.5 (0.8) 0.9 (1.2) <0.001*** All comparisons <0.001*** 
Pain, mean (SD) 0.6 (0.9) 1.0 (1.1) 1.4 (1.1) 0.002** I vs. rest <0.001*** 
Fatigue, mean (SD) 0.7 (0.8) 1.1 (1.0) 1.6 (1.2) <0.001*** All comparisons <0.001*** 
Sleep, mean (SD)       

Epworth sleepiness score 5.4 (3.9) 8.5 (4.4) 10.2 (5.7) <0.001*** I vs. rest <0.001*** 
REM sleep behavior disorder 3.7 (2.9) 5.3 (3.1) 5.7 (3.6) <0.001*** I vs. rest <0.001** 

Sleep phenotype, missing = 1, N (%)       
    REM sleep behavior disorder positive 51 (35.2) 117 (56.8) 30 (55.6) <0.001*** - -     REM sleep behavior disorder negative 94 (64.8) 89 (43.2) 24 (44.4) 
QUIP (Impulse control disorders) , mean 
(SD) 

0.3 (0.7) 0.5 (0.9) 0.2 (0.4) 0.028*  0.054 

Geriatric depression scale, mean (SD) 1.6 (1.9) 3.0 (2.6) 4.9 (4.2) <0.001*** All comparisons <0.001*** 
Depression phenotype, missing = 1, N 
(%) 

      

    Normal 126 (86.9) 160 (77.7) 30 (55.6) 

<0.001*** - -     Mild 13 (9.0) 30 (14.6) 10 (18.5) 
    Moderate 2 (1.4) 15 (7.3) 11 (20.4) 
    Severe 4 (2.7) 1 (0.5) 3 (5.6) 
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State trait anxiety index, mean (SD)       
    State subscore 28.8 (8.9) 33.0 (9.5) 36.1 (13.4) <0.001*** I vs. rest <0.001*** 
    Trait subscore 29.5 (9.2) 33.7 (9.7) 36.8 (13.5) <0.001*** I vs. rest <0.001*** 
SCOPA autonomic questionnaire, mean 
(SD)       

    Gastrointestinal (up+down) 2.7 (2.2) 3.8 (2.5) 5.1 (3.7) <0.001*** All comparisons <0.001*** 
    Urinary 4.4 (2.7) 5.8 (5.3) 6.7 (4.8) 0.017* I vs. rest 0.111 
    Cardiovascular 0.5 (0.9) 0.8 (1.2) 1.4 (1.8) 0.001** III vs. rest 0.002** 
    Thermoregulatory 0.5 (1.1) 0.8 (1.2) 0.4 (0.7) 0.054 - 0.032* 
    Pupillomotor 0.4 (0.7) 0.6 (0.8) 0.8 (1.0) 0.048 - 0.062 
    Skin 0.7 (1.0) 1.2 (1.2) 1.5 (1.9) <0.001*** I vs. rest <0.001*** 
    Sexual 4.5 (6.3) 5.2 (6.4) 6.7 (7.4) 0.248 - 0.085 
    Total (sum all) 13.7 (8.7) 18.3 (11.1) 22.5 (15.2) <0.001*** I vs. rest <0.001*** 
Cognitive function, mean (SD)       
    MoCA-visuospatial 4.6 (0.7) 4.2 (1.1) 3.6 (1.6) <0.001*** All comparisons <0.001*** 
    MoCA-naming 3 (0.2) 2.9 (0.2) 2.8 (0.6) 0.041 III vs. rest 0.054 
    MoCA-attention 5.7 (0.5) 5.5 (0.8) 4.8 (1.4) <0.001*** III vs. rest <0.001*** 
    MoCA-language 2.6 (0.6) 2.5 (0.7) 2.2 (0.9) 0.013* I vs. III 0.028* 
    MoCA-delayed recall 4.3 (1.1) 3.3 (1.6) 1.9 (1.8) <0.001*** All comparisons <0.001*** 
    MoCA total score 28.3 (1.7) 26.5 (3.2) 23.0 (5.5) <0.001*** All comparisons <0.001*** 
    Benton judgment of line orientation 13.0 (2) 12.3 (2.2) 11.0 (2.8) <0.001*** All comparisons <0.001*** 
    HVLT-total recall 27.6 (5.1) 24.1 (6.3) 17.2 (4.9) <0.001*** All comparisons <0.001*** 
    HVLT-delayed recall 10 (2.4) 8.4 (3.1) 4.9 (3.1) <0.001*** All comparisons <0.001*** 
    HVLT-discrimination recognition 11.3 (1.1) 10.5 (2.0) 8.9 (2.5) <0.001*** All comparisons <0.001*** 
    HVLT-retention 0.9 (0.2) 0.9 (0.2) 0.7 (0.4) <0.001*** All comparisons <0.001*** 
    LNS 11.5 (2.6) 9.7 (2.8) 8.0 (3.4) <0.001*** All comparisons <0.001*** 
    Semantic fluency 55.6 (12.4) 47.1 (11.5) 35.3 (13.4) <0.001*** All comparisons <0.001*** 
    Symbol digit test 50.4 (10.7) 44.1 (10.7) 39.4 (15.3) <0.001*** I vs. rest <0.001*** 
Cognitive phenotype, missing = 7, N (%)       
    Normal 134 (97.1) 185 (89.4) 31 (51.4) 

<0.001*** - -     MCI 3 (2.2) 16 (7.7) 8 (14.8) 
    Dementia 1 (0.7) 6 (2.9) 15 (27.8) 
       
a P-values were calculated using ANOVA (for continuous variables) and 𝜒! test (for categorical variables) where appropriate. 
b Post-hoc analysis was performed using the Tukey HSD test when the ANOVA P-value < 0.05. 
c ANCOVA was used to calculate p-values (for continuous variables) adjusting for age, sex, and levodopa equivalent daily dose. 
Multiple correction was conducted by controlling false discovery rate (FDR). * FDR adjusted P-value< 0.05; ** FDR adjusted P-value< 0.01; *** FDR adjusted P-value< 
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0.001. 
 
HVLT = Hopkins Verbal Learning Test; MCI = mild cognitive impairment; MDS-UPDRS = Movement Disorders Society–revised Unified Parkinson’s Disease Rating 
Scale; MoCA = Montreal Cognitive Assessment; PIGD = postural instability and gait disorder; PPMI = the Parkinson’s Progression Markers Initiative; SCOPA = Scales for 
Outcomes in Parkinson’s Disease. 
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Supplementary Table 5. Demographics and baseline clinical characteristics by subtypes in the PDBP cohort 
Variables Subtype PD-I 

(Inching Pace) 
Subtype PD-M 

(Moderate Pace) 
Subtype PD-R 

(Rapid Pace) P-valuea Post-hocb P-value 
adjustedc 

# of participants 55 72 49 - - - 
Age at onset, year, mean (SD) 58.6 (9.8) 64.8 (9.3) 65.2 (9.8) <0.001 I vs. rest - 
Sex male, N (%) 28 (50.9) 43 (59.7) 32 (65.3) 0.335 - - 
Race white, N (%) 54 (98.2) 66 (91.7) 47 (95.9) 0.232 - - 
Symptom duration, year, mean (SD) 0.9 (0.8) 0.8 (0.7) 1.1 (0.8) 0.183 - - 
Family history, N (%) 7 (12.7) 10 (13.4) 8 (16.3) 0.896 - - 
Education history, N (%)       
    Less than 12 years - 2 (2.8) 1 (2.0) 

0.257 - -     12-16 years 32 (58.2) 50 (69.4) 27 (55.1) 
    Greater than 16 years 23 (41.8) 20 (27.8) 20 (40.8) 
       
Motor manifestations       
MDS-UPDRS Part II, mean (SD) 3.9 (2.9) 5.6 (4.7) 9.5 (6.0) <0.001*** III vs. rest <0.001*** 
MDS-UPDRS Part III, mean (SD) 14.9 (8.9) 18.1 (8.9) 24.4 (10.4) <0.001*** III vs. rest 0.012* 
H&Y Stage, mean (SD) 1.7 (0.5) 1.8 (0.5) 2.1 (0.5) <0.001*** III vs. rest <0.001*** 
Schwab and England score, mean 
(SD) 94.4 (5.0) 91.9 (7.8) 88.2 (6.7) <0.001*** III vs. rest <0.001*** 

Tremor score, mean (SD) 0.4 (0.4) 0.5 (0.4) 0.4 (0.3) 0.169 - 0.186 
PIGD score, mean (SD) 0.2 (0.2) 0.3 (0.2) 0.6 (0.5) <0.001*** III vs. rest <0.001*** 
Motor phenotype, N (%)       
    Tremor 37 (67.3) 48 (66.7) 18 (36.7) 

0.002** III vs. rest -     Indeterminate 4 (7.2) 8 (11.1) 4 (8.2) 
    PIGD 14 (25.5) 16 (22.2) 27 (55.1) 
Non-motor manifestations       
MDS-UPDRS Part I, mean (SD) 4.7 (3.3) 6.2 (4.4) 9.1 (5.0) <0.001*** III vs. rest <0.001*** 
Hallucination, mean (SD) 0.02 (0.12) 0.03 (0.17) 0.14 (0.35) 0.009* III vs. rest 0.010* 
Apathy, mean (SD) 0.2 (0.4) 0.2 (0.5) 0.4 (0.8) 0.201 - 0.170 
Pain, mean (SD) 0. 8 (0.9) 0.7 (0.7) 1.0 (1.1) 0.116 - 0.076 
Fatigue, mean (SD) 0.7 (0.6) 0.8 (0.8) 1.1 (0.9) 0.039 I vs. III 0.037 
Sleep, mean (SD)       
    Epworth sleepiness score 5.1 (3.2) 5.4 (3.2) 8.3 (5.1) <0.001*** I vs. III <0.001*** 
    REM sleep behavior disorder 0.1 (0.8) 0.08 (0.4) 0.1 (0.7) 0.885 - 0.817 
Cognitive function, mean (SD)       
    MoCA-language 2.5 (0.8) 2.4 (0.7) 2.3 (0.8) 0.401 - 0.575 
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    MoCA total score 27.1 (2.2) 26.2 (2.4) 26.2 (2.5) 0.050 - 0.361 
       
a P-values were calculated using ANOVA (for continuous variables) and 𝜒! test (for categorical variables) where appropriate. 
b Post-hoc analysis was performed using the Tukey HSD test when the ANOVA P-value < 0.05. 
c ANCOVA was used to calculate p-values (for continuous variables) adjusting for age and sex. 
Multiple correction was conducted by controlling false discovery rate (FDR). * FDR adjusted P-value< 0.05; ** FDR adjusted P-value< 0.01; *** FDR adjusted P-value< 
0.001. 
 
MDS-UPDRS = Movement Disorders Society–revised Unified Parkinson’s Disease Rating Scale; MoCA = Montreal Cognitive Assessment; PDBP = the Parkinson Disease 
Biomarkers Program; PIGD = postural instability and gait disorder. 
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Supplementary Table 6. 2-year follow-up clinical characteristics by subtypes in the PDBP cohort 
Variables Subtype PD-I 

(Inching Pace) 
Subtype PD-M 

(Moderate Pace) 
Subtype PD-R 

(Rapid Pace) P-valuea Post-hocb P-value 
adjustedc 

# of participants 55 72 49 - - - 
       
Motor manifestations       
MDS-UPDRS Part II, mean (SD) 4.2 (3.6) 6.5 (4.4) 14.6 (8.5) <0.001*** III vs. rest <0.001*** 
MDS-UPDRS Part III, mean (SD) 13.5 (5.8) 17.1 (7.8) 27.3 (12.4) <0.001*** III vs. rest <0.001*** 
H&Y Stage, mean (SD) 1.9 (0.4) 1.9 (0.3) 2.0 (0.7) 0.572 - 0.708 
Schwab and England score, mean 
(SD) 

93.3 (6) 92.2 (11.7) 81.2 (17.7) <0.001*** III vs. rest <0.001*** 

Tremor score, mean (SD) 0.4 (0.3) 0.5 (0.3) 0.5 (0.3) 0.095 - 0.123 
PIGD score, mean (SD) 0.1 (0.2) 0.2 (0.2) 0.6 (0.7) <0.001*** III vs. rest <0.001*** 
Motor phenotype, N (%)       
    Tremor 27 (49.1) 52 (72.2) 21 (42.9) 

0.005** - -     Indeterminate 10 (18.2) 2 (2.8) 2 (4.1) 
    PIGD 8 (14.6) 6 (8.3) 19 (38.8) 
Non-motor manifestations       
MDS-UPDRS Part I, mean (SD) 4.9 (3.8) 7.7 (5.3) 11.4 (6.3) <0.001*** All comparisons <0.001*** 
Hallucination, mean (SD) 0.04 (0.21) 0.03 (0.18) 0.24 (0.73) 0.036* II vs. III 0.022* 
Apathy, mean (SD) 0.1 (0.3) 0.1 (0.4) 0.4 (0.7) 0.002** III vs. rest 0.002** 
Pain, mean (SD) 0.6 (0.7) 0.8 (0.9) 1.3 (1.2) 0.005** I vs. III 0.002** 
Fatigue, mean (SD) 0.6 (0.8) 1.1 (1.1) 1.2 (1.0) 0.015* I vs. II 0.004** 
Sleep, mean (SD)       
    Epworth sleepiness score 5.2(3.4) 5.6 (4.4) 10.1 (4.3) <0.001*** III vs. rest <0.001*** 
    REM sleep behavior disorder 0.1 (0.9) 0.05 (0.3) 0.2 (0.8) 0.656 - 0.642 
Cognitive function, mean (SD)       
    MoCA-language 2.5 (0.7) 2.4 (0.8) 2.1 (0.9) 0.053 - 0.097 
    MoCA total score 27.6 (2.1) 26.1 (2.8) 24.5 (5.4) <0.001*** I vs. III 0.014* 
       
a P-values were calculated using ANOVA (for continuous variables) and 𝜒! test (for categorical variables) where appropriate. 
b Post-hoc analysis was performed using the Tukey HSD test when the ANOVA P-value < 0.05. 
c ANCOVA was used to calculate p-values (for continuous variables) adjusting for age and sex. 
Multiple correction was conducted by controlling false discovery rate (FDR). * FDR adjusted P-value< 0.05; ** FDR adjusted P-value< 0.01; *** FDR adjusted P-value< 
0.001. 
 
MDS-UPDRS = Movement Disorders Society–revised Unified Parkinson’s Disease Rating Scale; MoCA = Montreal Cognitive Assessment; PIGD = postural instability and 
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gait disorder. 



 27 

Supplementary Table 7. 4-year follow-up clinical characteristics by subtypes in the PDBP cohort 
Variables Subtype PD-I 

(Inching Pace) 
Subtype PD-M 

(Moderate Pace) 
Subtype PD-R 

(Rapid Pace) P-valuea Post-hocb P-value 
adjustedc 

# of participants 55 72 49 - - - 
       
Motor manifestations       
MDS-UPDRS Part II, mean (SD) 2.7 (1.7) 8 (4.0) 16.2 (6.6) <0.001*** All comparisons <0.001*** 
MDS-UPDRS Part III, mean (SD) 17.9 (7.8) 21.8 (5.8) 31.7 (9.9) 0.002** III vs. rest 0.003** 
H&Y Stage, mean (SD) 2.0 (0.0) 2.0 (0.0) 2.4 (0.7) 0.022* III vs. rest 0.019* 
Schwab and England score, mean 
(SD) 

95 (5.3) 90.8 (4.9) 76.7 (18.7) 0.002** III vs. rest 0.003** 

Tremor score, mean (SD) 0.4 (0.3) 0.4 (0.4) 0.5 (0.2) 0.714 - 0.598 
PIGD score, mean (SD) 0.1 (0.1) 0.4 (0.3) 1.1 (0.5) <0.001*** III vs. rest <0.001*** 
Motor phenotype, N (%)       
    Tremor 8 (14.6) 5 (7.0) 2 (4.1) 

0.056 - -     Indeterminate 1 (1.9) 4 (5.6) 1 (2.0) 
    PIGD 1 (1.9) 4 (5.6) 6 (12.2) 
Non-motor manifestations       
MDS-UPDRS Part I, mean (SD) 4.2 (3.0) 8.4 (2.9) 13.6 (7.3) <0.001*** III vs. rest <0.001*** 
Hallucination, mean (SD) - - 0.6 (0.7) - - - 
Apathy, mean (SD) 0.2 (0.4) 0.1 (0.3) 0.3 (0.5) 0.337 - 0.288 
Pain, mean (SD) 0.5 (0.5) 1.4 (1.3) 1.6 (1.1) 0.070 - 0.09 
Fatigue, mean (SD) 0.6 (0.7) 1.1 (1.0) 1.2 (1.0) 0.282 - 0.292 
Sleep, mean (SD)       
    Epworth sleepiness score 4.4 (2.2) 5.8 (3.1) 9.9 (3.5) 0.001** III vs. rest <0.001*** 
    REM sleep behavior disorder - - - - - - 
Cognitive function, mean (SD)       
    MoCA-language 2.8 (0.4) 2.5 (0.9) 2.1 (1.1) 0.209 - 0.309 
    MoCA total score 28.2 (1.9) 24.4 (4.4) 24.9 (3.6) 0.039 I vs. II 0.096 
       
a P-values were calculated using ANOVA (for continuous variables) and 𝜒! test (for categorical variables) where appropriate. 
b Post-hoc analysis was performed using the Tukey HSD test when the ANOVA P-value < 0.05. 
c ANCOVA was used to calculate p-values (for continuous variables) adjusting for age and sex. 
Multiple correction was conducted by controlling false discovery rate (FDR). * FDR adjusted P-value< 0.05; ** FDR adjusted P-value< 0.01; *** FDR adjusted P-value< 
0.001. 
 
MDS-UPDRS = Movement Disorders Society–revised Unified Parkinson’s Disease Rating Scale; MoCA = Montreal Cognitive Assessment; PIGD = postural instability and 
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gait disorder. 
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Supplementary Table 8. Annual progression rates in clinical manifestations and CSF biomarkers by subtypes assessed by linear mixed 
effects models in the PDB cohort 
Variable Subtype PD-I 

(Inching Pace) 
Subtype PD-M 

(Moderate Pace) 
Subtype PD-R 

(Rapid Pace) 
𝜷 P value 𝜷 P value 𝜷 P value 

Motor manifestations       
MDS-UPDRS Part II 0.10 (-0.20, 0.40) 0.530 1.01 (0.67, 1.36) <0.001*** 2.53 (1.40, 3.67) <0.001*** 
MDS-UPDRS Part III -0.30 (-1.07, 0.47) 0.444 1.12 (0.46, 1.78) 0.002** 2.70 (1.70, 3.70) <0.001*** 
H&Y Stage 0.04 (-0.00, 0.08) 0.078 0.05 (0.02, 0.08) 0.007* 0.10 (0.01, 0.19) 0.042 
Schwab and England score -0.48 (-1.10, 0.11) 0.117 -0.28 (-1.10, 0.53) 0.505 -4.05 (-5.92, -2.18) <0.001*** 
Tremor score -0.01 (-0.03, 0.02) 0.706 0.01 (-0.02, 0.03) 0.465 0.03 (-0.00, 0.06) 0.095 
PIGD score -0.03 (-0.04, -0.01) <0.001* 0.02 (-0.00, 0.041) 0.110 0.14 (0.06, 0.22) 0.001** 
Non-motor manifestations       
MDS-UPDRS Part I 0.11 (-0.10, 0.32) 0.333 0.85 (0.53, 1.16) <0.001*** 1.36 (0.91, 1.82) <0.001*** 
Hallucination 0.01 (-0.01, 0.03) 0.422 0.01 (-0.01, 0.02) 0.377 0.06 (0.01, 0.12) 0.031* 
Apathy -0.00 (-0.05, 0.04) 0.853 0.04 (-0.01, 0.09) 0.162 0.05 (-0.02, 0.13) 0.187 
Pain -0.03 (-0.09, 0.04) 0.453 0.13 (0.07, 0.20) <0.001*** 0.14 (0.03, 0.24) 0.013* 
Fatigue -0.02 (-0.08, 0.03) 0.440 0.09 (0.02, 0.16) 0.023 0.13 (0.06, 0.20) 0.002** 
Sleep       
    Epworth sleepiness score 0.12 (-0.11, 0.34) 0.327 0.17 (-0.14, 0.47) 0.294 0.69 (0.23, 1.10) 0.005** 
    REM sleep behavior disordera - - - - - - 
Cognitive function       
    MoCA-language 0.03 (-0.05, 0.11) 0.469 0.01 (-0.07, 0.08) 0.845 -0.16 (-0.26, -0.06) 0.005 
    MoCA total score 0.02 (-0.15, 0.18) 0.836 -0.15 (-0.4, 0.09) 0.214 -1.10 (-1.62, -0.57) <0.001*** 
a The values in REM sleep behavior disorders are so sparse that the corresponding beta is not available. 
Multiple correction was conducted by controlling false discovery rate (FDR). * FDR adjusted P-value< 0.05; ** FDR adjusted P-value< 0.01; *** FDR adjusted P-value< 
0.001. 
 
MDS-UPDRS = Movement Disorders Society–revised Unified Parkinson’s Disease Rating Scale; MoCA = Montreal Cognitive Assessment; PDBP = the Parkinson Disease 
Biomarkers Program; PIGD = postural instability and gait disorder. 
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Supplementary Table 9. Baseline CSF biomarkers by subtypes in the PPMI cohort 

Biomarker HC PD-I, mean (SD) PD-M, mean (SD) PD-R, mean (SD) 
P valuesa 

HC vs.  
PD-I 

HC vs.  
PD-M 

HC vs.  
PD-R 

PD-M vs.  
PD-I 

PD-R vs. 
PD-I 

PD-R vs.  
PD-M 

𝛼-synuclein 1704.491 (752.640) 1607.109 (734.891) 1487.264 (659.634) 1357.906 (505.550) 0.020 0.001 0.218 0.153 0.011 0.068 
A𝛽-42 1025.042 (498.628) 970.128 (463.830) 905.070 (386.737) 781.500 (351.559) 0.148 0.398 0.912 0.227 0.009 0.045 
P-tau 16.845 (8.412) 14.342 (5.403) 14.014 (5.107) 14.959 (6.352) 0.013 <0.001 0.023 0.571 0.767 0.760 
T-tau 190.283 (79.901) 169.613 (59.369) 163.533 (53.990) 170.126 (66.713) 0.014 <0.001 0.017 0.319 0.437 0.933 
A𝛽-42/T-tau 5.578 (1.649) 5.713 (1.480) 5.635 (1.572) 4.906 (1.885) 0.479 <0.001 0.009 0.962 0.022 0.051 
A𝛽-42/𝛼-synuclein 0.636 (0.221) 0.637 (0.219) 0.659 (0.282) 0.593 (0.208) 0.182 <0.001 0.218 0.311 0.340 0.402 
P-tau/𝛼-synuclein 0.010 (0.002) 0.009 (0.002) 0.010 (0.002) 0.011 (0.003) 0.821 0.742 0.004 0.072 0.001 0.007 
P-tau/T-tau 0.087 (0.007) 0.084 (0.008) 0.085 (0.007) 0.087 (0.008) 0.057 0.228 0.140 0.215 0.114 0.145 
T-tau/𝛼-synuclein 0.116 (0.026) 0.113 (0.028) 0.117 (0.029) 0.128 (0.026) 0.664 0.400 0.017 0.219 0.015 0.036 
A𝛽-42/P-tau 64.795 (20.617) 68.010 (17.636) 66.679 (20.169) 56.961 (22.692) 0.207 <0.001 0.006 0.841 0.010 0.037 
aANCOVA was used to calculate p-values adjusting for age and sex. 
 
A𝛽-42 = the 42 amino acid form of amyloid-𝛽; CSF = cerebrospinal fluid. 
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