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Node representation learning methods, such as graph neural networks, show promising results when testing and training

graph data come from the same distribution. However, the existing approaches fail to generalize under distribution shifts when

the nodes reside in multiple latent environments. How to learn invariant node representations to handle distribution shifts with

multiple latent environments remains unexplored. In this paper, we propose a novel Invariant Node representation Learning

(INL) approach capable of generating invariant node representations based on the invariant patterns under distribution

shifts with multiple latent environments by leveraging the invariance principle. Speciically, we deine invariant and variant

patterns as ego-subgraphs of each node, and identify the invariant ego-subgraphs through jointly accounting for node

features and graph structures. In order to infer the latent environments of nodes, we propose a contrastive modularity-based

graph clustering method based on the variant patterns. We further propose an invariant learning module to learn node

representations that can generalize to distribution shifts. We theoretically show that our proposed method can achieve

guaranteed performance under distribution shifts. Extensive experiments on both synthetic and real-world node classiication

benchmarks demonstrate that our method greatly outperforms state-of-the-art baselines under distribution shifts.

CCS Concepts: · Computing methodologies→ Neural networks; Learning latent representations; · Mathematics

of computing→ Graph algorithms.

Additional Key Words and Phrases: Graph Neural Networks, Node Representation Learning, Distribution Shift

1 INTRODUCTION

Graph-structured data is ubiquitous in the real world, e.g., social networks [22], knowledge graphs [61], biology
networks [5], chemical molecules [80], etc. Learning node representation is critical for various graph analytical
tasks such as node classiication [38] and link prediction [67]. Especially, graph neural networks (GNNs) [38, 75, 81]
have shown great successes in learning efective node representations and handling applications from various
ields [14, 35, 55, 70, 84, 94, 97, 100].

Despite their successes, the existing node representation learning approaches typically assume that the testing
and training graph data are drawn from the same distribution, namely the node features and graph structures of
labeled training nodes and testing nodes follow similar patterns. Under this assumption, the node representation
learning methods can naturally generalize to unseen testing nodes. However, this assumption can be easily
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violated in real-world graphs since nodes always reside in multiple latent environments where distribution shifts
widely exist between multiple latent environments of training and testing data induced by complex underlying
data generation mechanism [6]. For example, in protein-protein interaction graphs, the distributions of protein
features/interactions (i.e., input data) and their functions (i.e., labels) exist signiicant changes between diferent
species that the proteins come from (i.e., environments) [15]. In citation networks, the papers’ citations (i.e., input
data) and their subject topics (i.e., labels) are strongly afected by the publication time (i.e., environments) [33].
There exist increasing evidences suggesting that most node representation learning approaches are vulnerable
to distribution shifts [33, 78, 79] and fail to achieve out-of-distribution (OOD) generalization. If the models
capture the variant correlations across diferent environments rather than focus on invariant patterns of the truly
predictive properties in multiple latent environments, they will inevitably fail under distribution shifts, hindering
their applications in real-world graphs, especially for high-stake applications such as molecular prediction [80],
inancial analysis [85], medical diagnosis [47], drug repurposing [32], etc.
In this work, we study learning invariant node representations to handle distribution shifts with multiple

latent environments, which remains unexplored and poses great challenges as follows.

• First, nodes in the graph are connected by structures and cannot be modeled as independent samples for
predictions. Distribution shifts can happen on both node features and graph structures, leading to complex
invariant and variant patterns. How to deine and identify these patterns to capture suiciently predictive
information is non-trivial.
• Second, environment labels for nodes are usually unavailable or prohibitively expensive to collect. How to
infer the environment labels, which is critical for designing invariant learning methods, is also challenging
since the environments of diferent nodes are also highly entangled.
• Last but not least, even with the inferred environment labels of nodes, it requires tailored designs to learn
invariant node representations capable of generalization under distribution shifts with theoretical guarantees.

To tackle these challenges, we propose Invariant Node representation Learning (INL) approach capable of
learning invariant node representations under distribution shifts with multiple latent environments and achieve
theoretically grounded generalization performance. The framework of INL is shown in Figure 1. In particular, we
take a local view and deine invariant patterns as ego-subgraphs, i.e., subgraphs of the L-order ego-graph of each
node, and identify these ego-subgraphs through jointly considering node features and graph structures. Then, we
use the variant ego-subgraphs, i.e., the complement of invariant ego-subgraphs, to infer environment labels by
proposing a contrastive modularity-based graph clustering method. The variant ego-subgraphs capture correlative
but not truly predictive patterns with node labels under distribution shifts and therefore contain discriminative
information to infer environment labels of nodes. Finally, we propose to optimize the maximal invariant pattern
criterion given the identiied invariant ego-subgraphs and inferred environments to produce invariant node
representations. We theoretically show that INL can achieve guaranteed generalization performance by inding
a maximal invariant pattern. We conduct extensive experiments on both synthetic datasets and real-world
benchmarks for the node classiication task. The results show that INL achieves substantial performance gains
on the unseen testing nodes compared with various state-of-the-art baselines. Our contributions are summarized
as follows.

• We propose a novel Invariant Node representation Learning (INL) approach to learn invariant node represen-
tations capable of OOD generalization under distribution shifts. To the best of our knowledge, we are the irst
to study invariant node representation learning with multiple latent environments.
• We design a contrastive modularity-based graph clustering method to infer the environment labels of nodes
for the graph with complex multiple latent environments.

ACM Trans. Inf. Syst.
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Fig. 1. The framework of INL model. Our proposed method jointly optimizes three modules: (1) The invariant ego-subgraph

identification module uses Ψ(·) to identify the invariant ego-subgraph GI
v and the variant ego-subgraph GS

v for each node

v . (2) The node environment inference module uses the variant ego-subgraphs {GS
v } to infer the latent environments by

a contrastive modularity-based graph clustering. (3) The invariance regularization module jointly optimizes the invariant

ego-subgraph generator Ψ(·), the representation learning function д(·), and the classifierw (·). Training stage (shown by grey

arrows): we back propagate with the objective function to update model parameters. Testing stage (shown by orange arrows):

we use the optimized model to make predictions. This example assumes that the node labels have two classes, which are

denoted by red and green colors respectively.

• We propose a maximal invariant pattern criterion to learn node representations. We theoretically show that
by inding maximal invariant ego-subgraphs, INL can achieve guaranteed OOD generalization performance
under distribution shifts.
• Extensive experimental results demonstrate the efectiveness of INL on various synthetic and benchmark
datasets for the node classiication task under distribution shifts.

We introduce the notations and preliminaries in Section 2. In Section 3, we describe the problem formulation
and the details of our proposed INL. We present the experimental results in Section 4, including quantitative
comparisons on both synthetic and real-world datasets, complexity analysis, ablation studies, hyper-parameter
sensitivity, etc. Subsequently, some related works are reviewed in Section 5. Finally, we conclude this work in
Section 6.

2 NOTATIONS AND PRELIMINARIES

2.1 Notations

Consider a graphG = (V ,E), the node feature matrixX = {xv |v ∈ V } ∈ R
|V |×F (where F denotes the node feature

dimension) and labels Y = {yv |v ∈ V }. The adjacency matrix is denoted as A = {av,v ′ |v,v
′ ∈ V } ∈ R |V |× |V | ,

where av,v ′ = 1 means there exists an edge connecting node v and v ′, and av,v ′ = 0 otherwise. We assume the
nodes V are collected from multiple environments, i.e., V = {V e }e ∈supp(Etr ) , where V

e denotes the nodes from
environment e , supp(Etr ) is the support of the environmental variable. We use v and y to denote the random

ACM Trans. Inf. Syst.
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variables of node and label, respectively. We summarize the key notations of this paper and the corresponding
descriptions in Table 1.

Table 1. Notations.

Notation Description

G = (V ,E) The input graph G with node set V and edge set E
X ,A,Y The node feature matrix, the adjacency matrix, and the label vector
Gv ,Gv An instance and the random variable of node v’s ego-graph
G I
v = Ψ(Gv ) An instance of the invariant ego-subgraph and the invariant ego-subgraph generator

Ψ∗ The optimal invariant ego-subgraph generator
Xv ,Av The local node feature matrix and the adjacency matrix of ego-graph Gv

GS
v = Gv\G

I
v An instance of the variant ego-subgraph

Gv, v,Y, y The random variable of ego-graph, node, label vector, node label
X I
v/X

S
v The local node feature matrix of the invariant/variant ego-subgraph Gv

AI
v/A

S
v The local adjacency matrix of the invariant/variant ego-subgraph Gv

ZI The invariant node representations
Nv The node v’s L-hop neighbors
K The number of the ground-truth environments
E/Etr A random variable on indices of all/training environments
Einf er A random variable on indices of the inferred environments
|Einf er | The number of the inferred environments
C The cluster assignment matrix
Cv The one-hot vector indicating the environment of node v with dimensionality |Einf er |
e An instance of environment
G,Y The graph space and label space
f The predictor from G to Y

w The classiier from Rd to Y

h The representation learning function from G to Rd

д The representation learning function for invariant ego-subgraph
IE The invariant ego-subgraph generator set with respect to E
ℓ The loss function

2.2 Preliminaries

Recently, invariant learning has received surging attention to enable generalizing to distribution shifts, i.e.,
out-of-distribution (OOD) generalization. It aims to exploit the invariant relationships between the input data and
labels across distribution shifts, while iltering out the variant spurious correlations1. Following the invariant
learning literature [2, 4, 11, 40, 42, 64], we formulate the problem of learning invariant node representations

1Although the variant spurious correlations can be potentially useful for predictions in some environments, such correlations are not stable

and can change across diferent environments. It is infeasible to judge whether the variant spurious correlations are still correct or not when

the model is deployed in unknown testing environments with distribution shifts. Therefore, for achieving good OOD generalization rather

than trivially overitting the training data, the key idea of invariant learning is to learn invariant models for guaranteed generalization under

distribution shifts.

ACM Trans. Inf. Syst.
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capable of generalizing to distribution shifts, i.e., out-of-distribution (OOD) generalized node representation
learning, as:

Problem 1. Let E denote the random variable on indices of all possible environments of nodes V . The goal is to

ind an optimal predictor f ∗ (·) mapping nodes to their labels that performs well on all environments:

f ∗ (·) = argmin
f

sup
e ∈supp(E)

R ( f |e ), (1)

where R ( f |e ) is the risk of the predictor f on the nodes that belong to environment e . Eq. (1) encourages to learn the

predictor whose performance on the worst-case environment is optimal, where such min-max optimality with respect

to unseen test environments is proved to satisfy the OOD generalization in the invariant learning literature [3, 40, 64].

We further decompose f (·) = w ◦ h, where h(·) : G → Rd is the representation learning function, G is the graph

space, d is the dimensionality, andw (·) : Rd → Y is the classiier.

Note that supp(Etr ) ⊂ supp(E). Distribution shifts indicate that Pe (v, y) , Pe
′

(v, y), e ∈ supp(Etr ), e
′ ∈

supp(E) \ supp(Etr ), i.e., the joint distribution of node and label is diferent in training and testing data. The
testing nodes are not available in the training stage, meaning that we can not obtain a prior distribution of testing
nodes for training2. However, Problem 1 is diicult to be directly solved since (1) the nodes are non-independent
which connected by graph structure inducing obstacle for predictions, and (2) the environment labels for the
nodes are unobserved [4, 40], which are usually unavailable or prohibitively expensive to collect for most real
scenarios.

3 METHOD

In this section, we introduce our proposed INL in detail. The framework of INL is shown in Figure 1. Specii-
cally, we irst propose an invariant ego-subgraph identiication module. Then, we infer environment labels by
proposing a contrastive modularity-based graph clustering method. Lastly, we optimize the maximal invariant
pattern criterion to produce invariant node representations capable of generalizing under distribution shifts with
theoretical guarantees.

3.1 Problem Formulation

In this paper, we focus on learning invariant node representation by adopting message-passing GNNs. Since only
the immediate neighbors of nodes are aggregated in each message-passing layer, the representation of nodes
only depends on their L-hop neighbors, where L is the number of message-passing layers. Therefore, we learn
representations of nodes by only focusing on their L-order ego-graph, which is the common assumption for most
message-passing GNNs [34, 38, 78]. Denote the node v’s L-hop neighbors as Nv = {u |d (v,u) ≤ L}, where d (v,u)
is the shortest path distance between node v and u. The nodes in Nv and their connections form the ego-graph
Gv of node v , which is represented as a local node feature matrix Xv = {xu |u ∈ Nv } and local adjacency matrix
Av = {au,u′ |u,u

′ ∈ Nv }. We use Gv and Gv to denote the random variable and instance of ego-graphs, and
use G and Y to denote the random variable of input graph and node label vector, respectively. Then, we can
reformulate the problem by using ego-subgraphs, i.e., a ego-graph dataset deined as G = {Ge }e ∈supp(Etr ) , where
Ge
= {(Ge

v ,y
e
v ) |v ∈ V

e } denotes the ego-graphs in environment e . Notice that ego-graphs are not independent
samples, but they can be seen as a Markov blanket [34, 78], so that the conditional distribution can be decomposed
(conditional independence), i.e., P (Y|G) =

∏

v P (y|Gv).

2We follow this more challenging out-of-distribution generalization [2, 4, 11, 40, 42, 64] setting instead of the semi-supervised/adaptation

setting that unlabeled testing graph data is available during training.

ACM Trans. Inf. Syst.
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Problem 2. Given the training graph where nodes are from multiple latent environments but without environment

labels, the task is to jointly infer the node environments Einf er , and learn f ∗ (·) in Problem 1 with Einf er to achieve

good OOD generalization performance under distribution shifts.

3.2 Invariant Ego-subgraph Identification

To enable OOD generalization, recent studies on invariant learning [2, 4, 11, 40, 42, 64] propose to train a predictor
using only a portion of features of each input instance which capture the invariant and suiciently predictive
relations with labels. Since we have transformed the node representation learning task into only using ego-
graphs Gv , we assume that each ego-graph instance has an invariant subgraph, i.e., ego-subgraph G I

v ⊂ Gv , that
possesses invariant and suiciently predictive information to the node’s label yv in diferent environments under
distribution shifts. We refer to the rest of each ego-graph, i.e., the complement ofG I

v , as the variant ego-subgraph
and denote it asGS

v .G
S
v represents the surrounding part of the node v whose relationship with the label is variant

across diferent environments, e.g., spurious correlations for predicting node v . The graph model will have a better
OOD generalization ability if it can identify the invariant ego-subgraph G I

v for each node accurately and learn
node representation based on G I

v for predictions.
Formally, we denote a generator for each node’s ego-graph to obtain the invariant ego-subgraph asG I

v = Ψ(Gv ).
Following the invariant learning literature [2, 11, 40, 42, 45, 50], we make the assumption.

Assumption 1. Given ego-graphGv, there exists an optimal invariant ego-subgraph generator Ψ∗ (Gv) satisfying
the following properties:

a. Invariance property: ∀e, e ′ ∈ supp(E), Pe (y|Ψ∗ (Gv)) = Pe
′

(y|Ψ∗ (Gv)), where Pe (·) and Pe
′

(·) denote the
probability distribution in two environments e and e ′, respectively.
b. Suiciency property: y = w∗ (д∗ (Ψ∗ (Gv))) + ϵ, ϵ ⊥ Gv, where д

∗ (·) denotes a representation learning function,
w∗ is the classiier, ⊥ indicates statistical independence, and ϵ is random noise.

The invariance assumption means that the node representations learned on invariant ego-subgraphs have an
invariant relation to the node labels across diferent environments. The suiciency assumption means that the
node representations learned on invariant ego-subgraphs are suiciently predictive to the node labels.

In this paper, we instantiate Ψ(·) using two learnable masks on node features and graph structures (i.e., edges).
First, the edge mask is responsible for splitting the local adjacency matrix Av of the ego-graph Gv into the
local adjacency matrix AI

v of the invariant ego-subgraph G I
v and the local adjacency matrix AS

v of the variant
ego-subgraphGS

v . A straight-forward strategy is to train a binary mask matrixMAv = {0, 1} |Nv |× |Nv | on the local
adjacency matrix Av . However, directly optimizing such a mask matrix is a discrete optimization problem and
intractable in practice, especially for large-scale graphs [88]. Besides, learning a mask for each ego-subgraph
cannot share knowledge among diferent nodes. Therefore, we adopt a learnable GNN (denoted as GNNM) to
parameterize the mask matrix. Speciically, we relax edge masks from binary variables to continuous variables in
[0, 1]. The soft mask for each edge (u,u ′),u,u ′ ∈ Nv in ego-graph Gv is:

MAv
u,u′ = Sigmoid(ZM

u

⊤
· ZM

u′ ), ZM
= GNNM (Gv ) ∈ R

d . (2)

Besides the edge mask, we also adopt a soft F -dimensional feature maskMX ∈ [0, 1]F shared by all the nodes
for selecting the invariant node features in the ego-graph Gv . The invariant ego-subgraph G

I
v = (AI

v ,X
I
v ) and

variant ego-subgraph GS
v = (AS

v ,X
S
v ) of Gv are calculated as:

AI
v = MAv ⊙ Av ,X

I
v = MX ⊙ Xv ; AS

v = Av −A
I
v ,X

S
v = Xv − X

I
v , (3)

where ⊙ is the element-wise matrix multiplication. Using the above method, we can generate all the invariant
ego-subgraphs {G I

v |v ∈ V } and variant ego-subgraphs {GS
v |v ∈ V }.

ACM Trans. Inf. Syst.
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3.3 Node Environment Inference

After splitting the nodes’ ego-graphs into invariant and variant subgraphs, we can infer the environment label
Einf er using variant subgraphs {G

S
v |v ∈ V }. The intuition is that since the invariant ego-subgraphs capture the

invariant relationships between predictive node features and graph structures with the node labels, the variant
ego-subgraphs in turn capture variant spurious correlations under diferent distributions. Consider two nodes
v,v ′ from the same environment (e.g., two proteins from the same species or two papers published in the same
period). Their variant ego-subgraphs GS

v and Gs
v ′ are likely show similar environment patterns. Based on the

graph homophily assumption [57] that similar nodes are more likely to connect to each other, the nodes from
the same environment will tend to be more densely connected in their variant ego-subgraphs than nodes from
diferent environments (an illustrating example is shown in Figure 1). Therefore, we can infer the environments
by conducting graph clustering based on the variant node features and edges.
Speciically, let X S and AS denote the node features and edges in {GS

v |v ∈ V }. Assuming there are K latent
environments in graph, we design a contrastive modularity-based clustering method to infer the environments
by learning a cluster assignment matrix C = {Cv |v ∈ V }, where Cv is K-dimensional one-hot vector indicating
the environment of node v . We propose to minimize the following contrastive objective for clustering the nodes
denoted by (X S ,AS ):

min
C
ℓ = −

1

K

K
∑

k=1

log
exp(Bk,k )

∑K
k ′=1,k ′,k exp(Bk,k ′ )

, (4)

where

B =
1

2m

(

C⊤ASC −
1

2m
diag
(

C⊤dd⊤C
)

)

. (5)

In Eq. (5), d andm indicate the degree vector and the number of edges calculated byAS , respectively. diag(·) means
only keeping the diagonal elements of the input matrix. B ∈ RK×K is the modularity matrix [60], whose entry Bk,k ′
is the probability of an edge existing between cluster k and k ′. Optimizing Eq. (4) can maximize the connection
probability between nodes from the same clusters (i.e., positive pairs) and minimize the connecting probability
between nodes from the diferent clusters (i.e., negative pairs) via a contrastive scheme [13], encouraging to form
clear clusters. Since optimizing the binary cluster assignment matrix is proven to be NP-hard [8], we follow [73]
to relax C ∈ [0, 1] |V |×K as a soft cluster assignment and adopt a GNN to calculate the assignment matrix, i.e.,

C = Softmax
(

GNNC
(

X S ,AS
))

. Finally, the optimal cluster assignment C∗ can be used to indicate the inferred

environments Einf er of nodes.

3.4 Invariance Regularization

After obtaining the inferred invariant ego-subgraphs {G I
v |v ∈ V } and environment labels Einf er , we propose the

invariance regularization module which can make the graph model to generate node representations capable of
OOD generalization under distribution shifts. Speciically, we aim to learn the optimal generator Ψ∗ in Assump-
tion 1 by proposing and optimizing the maximal invariant ego-subgraph generator criterion. Following the
invariant learning literature [11, 40, 50, 51], we give the following deinition.

Deinition 1. The invariant ego-subgraph generator set I with respect to E is deined as:

IE = {Ψ(·) : P
e (y|Ψ(Gv)) = Pe

′

(y|Ψ(Gv)), e, e
′ ∈ supp(E)}. (6)

Then, we show that the optimal generator Ψ∗ satisies the following theorem.

Theorem 1. A generator Ψ(Gv) is the optimal generator that satisies Assumption 1 if and only if it is the maximal

invariant ego-subgraph generator, i.e.,Ψ∗ = argmaxΨ∈IE I (y;Ψ(Gv)), where I (·; ·) is themutual information between

the label and the generated invariant ego-subgraph.

ACM Trans. Inf. Syst.
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Proof. Denote Ψ̂ = argmaxΨ∈IE I (y;Ψ(Gv)). According to the invariance property of Assumption 1, we have

Ψ∗ ∈ IE . Therefore, we prove the theorem by showing that I (y; Ψ̂(Gv)) ≤ I (y;Ψ∗ (Gv)) and consequently, Ψ̂ = Ψ∗.
To show the inequality, we use the functional representation lemma [23], which states that for any random
variables X1 and X2, there exists a random variable X3 independent of X1 such that X2 can be represented as

a function of X1 and X3. So for Ψ∗ (Gv) and Ψ̂(Gv), there exists Ψ
′(Gv) satisfying that Ψ′(Gv) ⊥ Ψ∗ (Gv) and

Ψ̂(Gv) = γ (Ψ∗ (Gv),Ψ
′(Gv)), where γ (·) is a function. Then, we can derive that:

I (y; Ψ̂(Gv)) = I (y;γ (Ψ∗ (Gv),Ψ
′(Gv)))

≤ I (y;Ψ∗ (Gv),Ψ
′(Gv))

= I (w∗ (д∗ (Ψ∗ (Gv)));Ψ
∗ (Gv),Ψ

′(Gv))

= I (w∗ (д∗ (Ψ∗ (Gv)));Ψ
∗ (Gv))

= I (y;Ψ∗ (Gv)) ,

(7)

which inishes the proof. □

Theorem 1 provides us an objective function to optimize the invariant ego-subgraph generator. However,
directly solving according to Theorem 1 for a non-linear Ψ is diicult [40]. Following the invariant learning
literature [40], we minimize the following invariance regularizer:

Ee ∈supp(Einf er )R
e ( f (Gv) , y;θ ) + λtrace

(

VarEinf er (∇θR
e )
)

, (8)

where f (·) = w ◦д ◦Ψ, Einf er is the infered environment label, and θ denotes all the learnable parameters. Recall
that д(·) is the representation learning function of the invariant ego-subgraphs and w (·) is the classiier. We
instantiate д as another GNN as: ZI = GNNI (G I

v ), where ZI are the node representations capturing invariant
patterns from the ego-subgraphs.w (·) is instantiated as a multilayer perceptron with the ReLU [1] activation
function, followed by the softmax function. By optimizing Eq. (8), we can get our desired generator Ψ and the
ego-subgraph representation learning function д(·), which collectively serve as our representation learning
method h(·), i.e., h = д ◦ Ψ.

We further theoretically analyze our INLmodel by showing that the maximal invariant ego-subgraph generator
can achieve OOD optimality.

Theorem 2. Let Ψ∗ be the optimal invariant ego-subgraph generator for Gv in Assumption 1 and denote the

complement as Gv\Ψ
∗ (Gv), i.e., the corresponding variant ego-subgraph. Then, we can obtain the optimal predictor

under distribution shifts, i.e., the solution to Problem 1, as follows:

argmin
w,д

w ◦ д ◦ Ψ∗ (Gv) = argmin
f

sup
e ∈supp(E)

R ( f |e ), (9)

if the following conditions hold: (1) Ψ∗ (Gv) ⊥ Gv\Ψ
∗ (Gv); and (2) ∀Ψ ∈ IE , ∃ e

′ ∈ supp(E) such that Pe
′

(Gv, y) =

Pe
′

(Ψ(Gv), y)P
e ′ (Gv\Ψ(Gv)) and P

e ′ (Ψ(Gv)) = Pe (Ψ(Gv)).

Proof. Denote the function to obtain the complement of invariant ego-subgraph as Φ(Gv) = Gv\Ψ(Gv) and

Φ∗ (Gv) = Gv\Ψ
∗ (Gv). By assumption, Ψ∗ (Gv) ⊥ Φ∗ (Gv). Further denote f̂ = argminw,дw ◦ д ◦ Ψ

∗ (Gv). By
Assumption 1, we have

f̂ (Gv) = w
∗ ◦ д∗ ◦ Ψ∗ (Gv). (10)

To show that f̂ is f ∗, our proof strategy is to show that ∀e ∈ supp(E), for any possible f , R ( f̂ |e ) ≤ R ( f |e ′) and

therefore supe ∈supp(E) R ( f̂ |e ) ≤ supe ∈supp(E) R ( f |e ).
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Algorithm 1 The training procedure of the proposed INL.

Input: The input graph and node labels
Output: An optimized predictor f (·) mapping node to its label

1: for epoch ← 1 to Epoch do

2: Generate the edge masks with the shared learnable GNNM by Eq. (2).
3: Obtain the invariant and variant ego-subgraphs of all nodes by Eq. (3).
4: for epoch′ ← 1 to Epoch_Cluster do
5: Optimize cluster assignment C by minimizing the objective in Eq. (4).
6: end for

7: Infer environments Einf er by obtaining the environment of each node ev = argmax Cv .

8: Generate invariant node representation ZI
v = GNNI (G I

v ) for all nodes.
9: Back propagate with the objective function in Eq. (8).
10: end for

To show the inequality, we have:

R ( f̂ |e ) (11)

= E
e
Gv,y

[ℓ( f̂ (Gv), y)] (12)

=

∑

Gv,y

Pe (Gv, y)ℓ( f̂ (Gv), y) (13)

=

∑

Φ∗ (Gv )

Pe (Φ∗ (Gv))

[

∑

Ψ∗ (Gv ),y

Pe (Ψ∗ (Gv), y) · ℓ (w
∗ (д∗ (Ψ∗ (Gv))), y)

]

(14)

=

∑

Ψ∗ (Gv ),y

Pe (Ψ∗ (Gv), y)ℓ(w
∗ (д∗ (Ψ∗ (Gv))), y) (15)

≤
∑

Ψ(Gv ),y

Pe (Ψ(Gv), y)ℓ(w (д(Ψ(Gv))), y) (16)

=

∑

Φ(Gv )

Pe
′

(Φ(Gv))
∑

Ψ(Gv ),y

Pe (Ψ(Gv), y)ℓ(w (д(Ψ(Gv))), y) (17)

=

∑

Φ(Gv )

∑

Ψ(Gv ),y

Pe
′

(Ψ(Gv), y)P
e ′ (Φ(Gv))ℓ(w (д(Ψ(Gv))), y) (18)

=

∑

Gv,y

Pe
′

(Gv, y)ℓ( f (Gv), y) (19)

= E
e ′

Gv,y
[ℓ( f (Gv), y)] (20)

= R ( f |e ′). (21)

□

Intuitively, Theorem 2 shows that we can transform the OOD generalization problem into inding the optimal
invariant ego-subgraphs while maintaining the optimality. The proof of the above theorems are inspired by the
invariant learning literature [45, 50, 51, 78]. And a motivating example for better understanding is provided in
Section 3.6. It indicates that our method can get rid of spurious correlations and learn OOD generalized node
representations based on the identiied invariant ego-subgraphs.
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3.5 Training Procedure

We present the pseudocode of INL in Algorithm 1 to show the training procedure. Speciically, we irst obtain
the invariant and variant ego-subgraphs for all nodes with the learnable masks on node features and edges. Then,
we infer the environments for all nodes with the variant node features and edges from variant ego-subgraphs.
And we learn the invariant node representations with invariance regularization based on the inferred invariant
ego-subgraphs and environment labels. Note that the adopted GNNs including GNNM, GNNC, and GNNI for all
ego-graphs are shared, following [34, 78]. At the testing stage, we directly adopt the optimized f to conduct
predictions. In Algorithm 1, łEpochž means the overall number of epochs for optimizing the proposed method
and łEpoch_Clusterž denotes the number of epochs for clustering to infer environments in each training epoch.
The setting details of the hyperparameters can be found in Section 4.1.3.

3.6 A Motivating Example

For better understanding our proposed method intuitively, we present a linear toy example and the corresponding
theoretical analysis inspired by [78] to show why our method can achieve out-of-distribution generalization by
learning node representations based on invariant ego-subgraphG I

v (i.e., invariant node featuresX I
v and structures

AI
v ).
For simpliication, in this toy example, we consider the ego-graph Gv (and Nv ) only contains the centered

node v and its 1-hop neighbors (i.e., L = 1), which can be split into invariant ego-subgraph G I
v (and N I

v ) and
variant ego-subgraph GS

v (and N S
v ). And we consider the dimensionality of node features F = 2, including

one-dimensional invariant node feature x Iv and variant node feature xSv , i.e., xv = [x Iv ,x
S
v ] for each node v . The

illustration of ego-graph Gv is shown in Figure 2. The dependence among variables in the toy example is shown
in Figure 3. We do not distinguish the notation of random variables and of their particular instances when there
is no risk of confusion in this toy example.
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Fig. 2. The ego-graph Gv in the toy example.

Considering the representation learning function д∗ that averages the node representations in invariant ego-
subgraph G I

v to produce the centered node representations and classiierw∗ is identity mappings in Assumption
1, the node label can be determined by the invariant node features and structures:

yv =
1

|N I
v |

∑

u ∈N I
v

x Iu + ϵ1, (22)
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where ϵ1 is standard normal noise. And we assume that the variant node feature xSv is generated by identity
mapping given the input of the node’s label yv and environment ev , which can be denoted as:

xSv = yv + ev + ϵ2, (23)

where ϵ2 is standard normal noise. ev denotes the node v’s environment, following normal distribution whose
mean and variance are dependent on node environment. Besides, we assume the variant structures are also
dependent on the node environment and the environments of nodes inN S

v is ev . For example, in citation networks,
the invariant node features and structures can be the paper published avenues and citations among them that
determine the subject topics (i.e., labels), while the variant node features and structures can be the citation indexes
and edges between papers with high citations in some publication periods (i.e, environments).

Therefore, given the invariant and variant ego-subgraph, we consider the following predictor model:

ŷv =
1

|N I
v |

∑

u ∈N I
v

(θ1x
I
u + θ2x

S
u ) +

1

|N S
v |

∑

u ∈N S
v

(θ3x
I
u + θ4x

S
u ). (24)

Note that the ideal solution for the predictor model is θ = [θ1,θ2,θ3,θ4] = [1, 0, 0, 0], indicating that the predictor
accurately identiies the suiciently predictive and invariant node features and structures for making OOD
generalized predictions. However, the following proposition shows that we cannot obtain this ideal solution if
only using standard empirical risk minimization (ERM):

Proposition 3. Denoting the risk (i.e., loss) of the predictor model f as R = 1
|V |

∑

v ∈V Eyv |Gv=Gv
| |ŷv − yv | |

2
2 , the

optimal solution for objectiveminθR is θ = [θ1,θ2,θ3,θ4] = [1 −
µS

2(µS−µ I )
,

µS

2(µS−µ I )
,

µ I

2(µS−µ I )
,

−µ I

2(µS−µ I )
], assuming

µ I , µS , where µ I = 1
|V |

∑

v ∈V
1
|N I

v |

∑

u ∈N I
v
eu and µS = 1

|V |

∑

v ∈V
1
|N S

v |

∑

u ∈N S
v
eu are dependent on the node

environments.

The proof is in Appendix A.1. Proposition 3 indicates directly optimizing with ERM will inevitably make the
predictor model heavily rely on spurious correlations since θ2,θ3,θ4 is not constant zero, leading that the model
performs poorly under distribution shifts with multiple latent environments. Next, we show that our objective in
Eq. (8) can mitigate this issue.

Proposition 4. The solution of optimizing the invariance regularizer in Eq. (8) to the minimum satisies

[θ2,θ3,θ4] = [0, 0, 0].

The proof is in Appendix A.2. Proposition 4 indicates our method can get rid of spurious correlations and learn
OOD generalized node representations under distribution shifts with multiple latent environments by generating
node representations based on the identiied invariant ego-subgraph G I

v .
Intuitively, Proposition 3 shows that the optimal solution under standard empirical risk minimization (ERM)

in this toy example (as shown in Figure 2) consists of non-zero coeicients of the predictor model for variant
ego-subgraph, which means that the predictions rely on variant environment information, e.g., diferent species
that the proteins come from in protein-protein interaction graphs and the publication time of papers in citation
networks. Therefore, the OOD generalization performance is poor. On the other hand, Proposition 4 shows
that the optimal solution using the proposed method in this toy example only includes non-zero coeicients
of the predictor model for invariant ego-subgraph, demonstrating that our method can make predictions only
based on the invariant information and is not afected by variant spurious correlations, leading to strong OOD
generalization ability.
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4 EXPERIMENTS

In this section, we empirically evaluate our proposed method through the experiments on both synthetic and
real-world datasets, including the experimental setup, quantitative comparisons, complexity analysis, ablation
studies, the impact of the hyper-parameters, etc.

4.1 Experimental Setup

4.1.1 Datasets. We adopt two synthetic datasets with artiicial distribution shifts based on two representative
node classiication benchmarks Citeseer [86] and Amazon-Photo [69], in which ground-truth generation processes
are controllable. And we also consider another two real-world datasets OGB-Arxiv and OGB-Proteins from Open
Graph Benchmark [33]. The statistics of these datasets are provided in Table 2.

Table 2. The statistics of the datasets. #Nodes/#Edges are the number of nodes and edges in the graph of the dataset,

respectively. #Classes denotes the number of Classes. Metric is the evaluation metric of the dataset.

Citeseer Amazon-Photo OGB-Arxiv OGB-Proteins

#Nodes 3,327 7,650 169,343 132,534
#Edges 9,104 238,162 1,166,243 39,561,252
#Classes 6 8 40 2
Metric Accuracy Accuracy Accuracy ROC-AUC

Synthetic datasets. Citeseer and Amazon-Photo are two commonly used node classiication benchmarks.
Citeseer is a citation network where nodes represent papers and edges indicate their citations. Amazon-Photo is
a co-purchasing network where nodes represent items and edges represent two items purchased together. For
evaluating the model’s out-of-distribution generalization ability, we introduce distribution shifts between the
training and testing data.

Following [78], we irst use a randomly initialized 2-layer GCN to generate node labels Y based on the original
node features and edges, which can be regarded as invariant and suiciently predictive information to the labels
and denoted by (X I ,AI ). Then we assign nodes into diferent environments and create spurious correlations
between the label and environment. Based on the label and environment of each node, we generate an additional
feature matrix and additional edges as the variant patterns, which are denoted by (X S ,AS ). The generated feature
(i.e., X S ) has the same dimensionality as the original feature (i.e., X I ) and the number of generated edges (i.e.,
AS ) equals the original number of edges (i.e., AI ). We then concatenate the two feature matrices and add the
generated edges into the original graph as the input data, i.e., (X = [X I ,X S ],A = AI

+ AS ). The dependence
among these variables is illustrated in Figure 3.
More speciically, we set the ground truth number of environments as K = 3 and adopt a hyper-parameter

r ∈ [0, 1] to control the strength of spurious correlations by setting the probability of node v belonging to the
k-th environment as P (v ∈ V ek ) = r if k ≡ yv (mod K ) and P (v ∈ V ek ) = (1 − r )/2 otherwise. Intuitively, nodes
with the same labels more likely belong to the same environment. For example, for the nodes whose labels are 1
or 4, the probability of these nodes belonging to the 1st environment is r and the probability belonging to the
2nd or 3rd environment is (1 − r )/2. In the K = 3 case, r = 1/3 means there is no spurious correlation and a
larger r indicates a higher spurious correlation between the label and environment. We set rtest = 1/3 and vary
rtrain in {1/3, 0.5, 0.7} to generate testing and training graphs respectively, which simulates diferent strengths of
distribution shifts. We hold out 10% nodes from the training graph for validation.

After obtaining the environment of each node, we generate variant node features X S by a two-layer MLP given
the label and environment id as the input. Then we generate variant edges AS by connecting nodes with similar
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Fig. 3. The dependence among variables in our synthetic datasets.

variant node features. In particular, we irst calculate the scores of any potential edges (i.e., edges not in AI ) by
cosine similarity of variant node features of the two nodes. According to the scores, we select Top-t edges in all
potential edges to form the variant edges AS , where the number of invariant and variant edges is equal, i.e., t is
the number of edges in AI .

OGB-Arxiv. This dataset consists of Arxiv CS papers from 40 subject areas and their citations. The task is to
predict the 40 subject areas of the papers3, e.g., cs.AI, cs.LG, cs.OS, etc. Instead of the semi-supervised/adaptation
setting where unlabeled testing data is available during training [33], we follow the more common and challenging
out-of-distribution generalization [2, 4, 11, 40, 42, 64] setting, i.e., the testing nodes are not available in the training
stage. Since several latent inluential environment factors (e.g., the popularity of research topics) can change
signiicantly over time, the properties of citation networks will be varying in diferent time ranges. Therefore,
the node distribution shifts on OGB-Arxiv are introduced by selecting papers published before 2011 as training
set, within 2011-2014 as validation set, and within 2014-2016/2016-2018/2018-2020 as three testing sets.

OGB-Proteins. In this dataset, nodes represent proteins and edges indicate diferent types of biologically
meaningful associations between proteins, e.g., physical interactions, co-expression or homology [71]. The
task is to predict the presence of protein functions in a binary classiication setup. We also follow the out-of-
distribution generalization [2, 4, 11, 40, 42, 64] setting, i.e., the testing nodes are not available in the training
stage, instead of the semi-supervised setting. Since the latent inluential environment factors can vary from
diferent species that the proteins come from, the properties and associations of proteins will also be diferent in
diferent species. Therefore, the node distribution shifts on OGB-Proteins are introduced by selecting nodes into
training/validation/testing sets according to their species. Speciically, the training set and validation set include
proteins and their associations from four and one species, respectively. And each of the three testing sets consists
of proteins and their associations from one of the left three species.

The datasets are publicly available as follows:

• Citeseer: https://github.com/kimiyoung/planetoid with MIT license
• Amazon-Photo: https://github.com/shchur/gnn-benchmark with MIT License
• OGB-Arxiv, OGB-Proteins: https://ogb.stanford.edu/docs/nodeprop/ with MIT License

4.1.2 Baselines. We compare our INL with the following representative state-of-the-art methods:

• ERM [74]: We use ERM to denote the backbone GNNmodels, which are trained with the standard empirical
risk minimizing, namely minimizing the sum of risks across environments and training samples.

3https://arxiv.org/corr/subjectclasses
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• GroupDRO4 [65]: It handles the problem that the distribution minority lacks suicient training and
seeks to explicitly optimize the worst-performance over a distribution set to achieve OOD generalization
performance.
• IRM5 [4]: It is a representative invariant learning method. To learn invariances across environments for
enabling OOD generalization, it seeks to ind data representations or features so that the optimal classiier
on top of that representation matches for all environments. We conduct random environment partitions on
the nodes of input graph for training because this method needs the explicit environment labels in advance.
• V-REx6 [42]: This method is proven to be able to recover the causal mechanisms of the targets and is robust
to distribution shifts. Speciically, it minimizes the risk variances of the training environments for reducing
the risk variances of the test environments, leading to good OOD generalization. Since this method relies
on the explicit environment labels that are unavailable for the nodes in multiple latent environments, we
conduct random environment partitions on the nodes of input graph during training stage.
• EERM7 [78]: It is a recent pioneering work that can tackle node-level prediction tasks under distribution
shifts and achieves a valid solution for the node-level OOD problem under mild conditions. It studies
invariant predictions on graph by assuming all nodes share a single environment. However, it ignores the
more common and challenging situation that nodes are from multiple latent environments.
• GIL [45]: It learns invariant graph-level representations under distribution shifts. However, it only focuses
on the graph-level generalization on graph classiication tasks, but cannot tackle the key problem studied
in this paper where distribution shifts exist on nodes. In the experiments, we modify its every module from
graph-level to node-level for comparisons.

Since all the methods are model-agnostic, we use GCN [38] as the GNN backbone on the synthetic datasets,
and adopt GraphSAGE [30] and GAT [75] on the real-world datasets for a comprehensive comparison. Intuitively,
the node classiication on the synthetic datasets is simpler than that on the real-world datasets. Therefore, the
classical GNN model, GCN, is used on the synthetic datasets while relatively advanced models, GraphSAGE and
GAT, are considered on the real-world datasets.

4.1.3 Implementation Details. The number of epochs for optimizing our proposed method (i.e., Epoch in Al-
gorithm 1) and baselines is set to 200 for the synthetic datasets (i.e., Citeseer and Amazon-Photo) and 500
for the real-world datasets (i.e., OGB-Arxiv and OGB-Proteins). The number of epochs for clustering to infer
environments in each training epoch (i.e., Epoch_Cluster in Algorithm 1) is 20. The Adam optimizer is adopted for
gradient descent. Since we focus on node classiication tasks, we use the cross-entropy loss as the loss function ℓ.
The classiierw is instantiated as a two-layer MLP. The activation function is ReLU [1]. The evaluation metric
is ROC-AUC for OGB-Proteins datasets and accuracy for the others. For GNNM, GNNC, and GNNI, the number
of layers is set to 2 on all the datasets. The dimensionality of the node representations d is 32 on the synthetic
datasets, 128 on OGB-Arxiv, and 256 on OGB-Proteins. Note that these GNNs including GNNM, GNNC, GNNI

are shared for all ego-subgraphs following [34, 78]. The invariance regularizer coeicient λ in Eq. (8) is chosen
from {10−4, 10−2, 100}. The number of the inferred environments |Einf er | is chosen from {2, 3, 4}, which is the
dimensionality of the vector Cv indicating the node v’s environment in the cluster assignment matrix C . We
report mean results and standard deviations of ten runs. The selected λ and |Einf er | are reported in Table 3.
As for the baselines, we implement them using the oicial source codes. We conduct the hyperparameter

search for each baseline covering the search range of both our method and the original paper (if the search range

4https://github.com/kohpangwei/group_DRO
5https://github.com/facebookresearch/InvariantRiskMinimization
6https://github.com/capybaralet/REx_code_release
7https://github.com/qitianwu/GraphOOD-EERM
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Table 3. The selected hyper-parameters of λ and |Einf er | of our method on each dataset.

Citeseer Amazon-Photo OGB-Arxiv OGB-Proteins

λ 10−4 10−4 10−2 100

|Einf er | 3 3 3 4

is reported). The search range and the selected hyperparameters of the baselines are reported in Table 4. The
other hyperparameters of the baselines are kept consistent with our method as described above.

Table 4. The selected hyper-parameters of the baselines on each dataset.

Range Citeseer Amazon-Photo OGB-Arxiv OGB-Proteins

Number of
Training

Environments

IRM {2, 3, 4} 3 2 3 2
GroupDRO {2, 3, 4, 5} 2 2 4 4

V-REx {2, 3, 4} 3 4 2 2
EERM {2, 3, 4, 5, 10} 3 5 4 3
GIL {2, 3, 4} 2 2 3 3

Regularizer
Coeicient

IRM {10−4, 10−2, 100} 10−2 10−4 10−2 10−2

V-REx {10−4, 10−2, 100, 102, 104} 10−4 10−4 100 10−2

EERM {10−4, 10−2, 13 , 0.5, 1.0, 2.0, 5.0} 10−2 2.0 1.0 1.0
GIL {10−5, 10−4, 10−3, 10−2, 10−1, 100} 10−4 10−3 10−2 10−2

We conduct the experiments with the following hardware and software conigurations:

• Operating System: Ubuntu 18.04.1 LTS
• CPU: Intel(R) Xeon(R) CPU E5-2699 v4@2.20GHz
• GPU: NVIDIA GeForce RTX 3090 with 24GB of Memory
• Software: Python 3.6.5; NumPy 1.19.2; PyTorch 1.10.1; PyTorch Geometric 2.0.3 [25].

4.2 Experiments on Synthetic Datasets

The experimental results are shown in Table 5, from which we have the following observations. Our proposed
INL consistently and signiicantly outperforms the baselines and achieves the best performance in all settings.
The results demonstrate the efectiveness of our proposed method in handling distribution shifts, which has a
remarkable out-of-distribution generalization ability. The general invariant learning methods, e.g., IRM, Group-
DRO, V-REx, only have slight improvements to ERM. EERM is a recently proposed invariant method speciically
designed for learning node representations but assumes a single environment is shared for all the nodes. EERM
outputs competitive results in some settings but fails to obtain consistent improvements, indicating modeling
multiple latent environments is crucial for handling distribution shifts in graph. GIL achieves promising gains
over the other baselines, but the proposed method still performs better than it.
In addition, when rtrain = 1/3, i.e., no distribution shifts between training and testing data, our proposed

method also achieves the best results, meaning that learning invariant ego-subgraphs for nodes is also beneicial.
As rtrain grows larger, the performance of all the methods tends to decrease since there exists a larger degree of
distribution shift. Nevertheless, our proposed method is able to maintain the most relatively stable performance.
In fact, the performance gap between INL and the best results of baselines becomes more signiicant as the
degree of distribution shift increases. For example, the accuracy improvements against the strongest baselines
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Table 5. The node classification accuracy (%) on testing sets of the synthetic datasets. In each column, the boldfaced and

the underlined score denotes the best and the second-best result, respectively. Numbers in the lower right corner denote

standard deviations. ł*ž indicates the statistically significant improvements (one-tailed t-test with p < 0.05 ) upon the best
baseline.

Citeseer Amazon-Photo

rtrain r = 1/3 r = 0.5 r = 0.7 r = 1/3 r = 0.5 r = 0.7

GCN(ERM) 47.09±3.44 45.36±5.54 40.09±2.12 48.26±2.26 47.91±3.24 39.23±5.27

IRM 48.84±2.75 45.39±2.07 42.89±2.38 53.75±1.31 50.98±3.09 42.23±2.75

GroupDRO 49.32±6.47 46.30±5.44 40.68±2.83 49.62±6.45 47.65± 8.34 41.15±5.50
V-REx 47.53±3.65 43.11±4.06 41.03±4.29 47.13±8.01 48.53± 8.37 37.49±5.39
EERM 53.07±4.39 45.50±3.68 41.53±1.96 52.25±5.90 51.03±2.93 41.69±4.63
GIL 55.71±1.24 47.42±2.10 44.87±3.26 53.19±2.74 50.01±2.06 41.79±3.98
INL 60.48±0.77∗ 56.74±0.75∗ 54.78±2.50∗ 55.86±1.63∗ 55.07±2.27∗ 46.90±2.06∗

Improvement 4.77↑ 9.32↑ 9.91↑ 2.11↑ 4.04↑ 4.67↑
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Fig. 4. Results of discovering the ground-truth invariant node features and edges on Citeseer.

increases from 4.77% to 9.91% when rtrain changes from 1/3 to 0.7 on Citeseer, indicating the powerful OOD
generalization ability of our method under various complex distribution shifts.

To further analyze whether our method can accurately capture the invariant ego-subgraphs under distribution
shifts, we compare the output invariant node features and structures with the ground-truth on the synthetic dataset
Citeseer. The evaluation metric is ROC-AUC. The results in Figure 4 show that the ROC-AUC for discovering
invariant node features and structures is around 70% and 80%, respectively, which is signiicantly higher than
random selection (50%). It demonstrates our INL can discover the truly predictive invariant ego-subgraphs and
further make OOD generalized predictions.

4.3 Experiments on Real-world Graphs

We further evaluate the efectiveness of our method on two real-world graph datasets, i.e. OGB-Arxiv and
OGB-Proteins from OGB [33]. The properties of citation networks can change signiicantly in diferent time
ranges. So the node distribution shifts on OGB-Arxiv are introduced by selecting papers published before 2011 as
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Table 6. The node classification results (accuracy for OGB-Arxiv, ROC-AUC for OGB-Proteins, %) on testing sets of the
real-world datasets. The boldfaced and the underlined score denotes the best and the second-best result, respectively.
Numbers in the lower right corner denote standard deviations. ł*ž indicates the statistically significant improvements
(one-tailed t-test with p < 0.05 ) upon the best baseline.

Dataset OGB-Arxiv OGB-Proteins

Backbone Method 2014-2016 2016-2018 2018-2020 Species-1 Species-2 Species-3

GraphSAGE

ERM 45.24±0.60 42.25±1.02 38.75±0.97 66.44±0.48 64.18±0.59 57.61±1.72
IRM 45.31±0.56 42.48±1.98 40.23±1.07 67.03±0.41 64.38±0.87 57.54±1.13

GroupDRO 45.35±0.68 42.56±0.88 39.26±0.81 66.28±0.27 64.51±0.35 57.87±0.89
V-REx 45.27±0.71 42.51±1.13 39.31±0.96 67.43±0.18 64.38±0.51 57.71±1.42
EERM 46.15±0.98 43.27±1.01 41.61±0.96 66.40±0.59 64.39±0.12 57.12±1.21
GIL 47.92±0.45 45.78±0.62 41.27±0.91 67.39±0.86 66.54±1.38 55.81±1.76
INL 49.43±0.53∗ 49.19±0.98∗ 46.34±0.87∗ 72.20±0.41∗ 69.47±0.72∗ 61.07±1.45∗

GAT

ERM 45.94±1.03 43.52±0.95 40.42±0.98 66.34±0.45 64.35±0.60 57.83±1.75
IRM 46.73±0.91 44.32±0.91 42.04±0.99 66.33±0.30 64.61±0.43 56.91±0.93

GroupDRO 45.95±0.89 43.52±1.25 40.43±1.32 66.30±0.27 64.52±0.31 57.95±0.79
V-REx 45.93±0.87 45.69±0.81 41.01±1.03 66.14±0.58 64.31±0.60 57.73±1.32
EERM 45.99±1.22 45.32±0.84 42.01±1.36 66.35±0.48 64.32±0.21 56.13±0.98
GIL 47.70±0.93 45.65±1.41 41.87±1.89 66.31±0.69 67.12±0.89 55.98±0.83
INL 50.37±1.01∗ 49.12±1.23∗ 45.35±1.32∗ 73.89±0.39∗ 71.42±0.28∗ 60.36±1.12∗

training set, within 2011-2014 as validation set, and within 2014-2016/2016-2018/2018-2020 as testing sets. For
OGB-Proteins dataset, since the interactions between proteins can vary from diferent species that the proteins
come from, we split the protein nodes into training/validation/test sets according to their species. We assume the
test nodes are strictly unseen during training stage, which is more common in practice and more challenging than
the default setting of OGB [33].
The experimental results are presented in Table 6. Our proposed method consistently achieves the best

performance, indicating that INL can well handle distribution shifts existing in real-world scenarios. For example,
INL increases the classiication accuracy by 3.41% on OGB-Arxiv (tested on 2016-2018 with GraphSAGE backbone)
and ROC-AUC by 7.54% on OGB-Proteins (tested on species-1 with GAT backbone) against the strongest baselines
respectively. Besides, diferent datasets have diferent distribution shifts and none of the baselines can consistently
achieve promising OOD generalized performance as our method. Therefore, the results show that our proposed
method can well handle diverse types of distribution shifts in real graph datasets.
Besides the quantitative evaluation, we plot a showcase from the OGB-Arxiv to intuitively validate the

efectiveness of our method. Figure 5 shows that the learned invariant ego-subgraph G I
v (denoted by solid lines)

and variant ego-subgraphGS
v (denoted by dashed lines) of one node v (ID: 139,332). We plot the top-5 selected

edges by the masks for simplicity. It can be observed that the invariant ego-subgraphG I
v learned by our method

accurately corresponds to the neighbors in the ego-graph from the same subject area (i.e., artiicial intelligence),
which have truly predictive and invariant relations with the centered node. On the other hand, the variant
ego-subgraph GS

v highlights the neighbors that are from diferent subject areas which are published in the same
year with the centered node and have a high citation index (spurious feature). Besides, there is another paper u
whose subject area is information retrieval (IR) that also cites those papers with high citation indexes, meaning
that the node u has similar variant patterns with node v so that they are in the same environment. We can
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Fig. 5. The learned invariant and variant ego-subgraphs of the papers v and u from OGB-Arxiv.

observe that these nodes form clear cluster structures based on the variant ego-subgraphs, demonstrating the
efectiveness of the proposed graph clustering algorithm in inferring latent environments.

4.4 Analysis of Node Environment Inference
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Fig. 6. The test accuracy and the performance of environment inference w.r.t training epochs.

In our proposed model, all components are jointly optimized. To show that the node environment inference
module and invariance regularization module can mutually promote each other, we record the test accuracy, the
modularity, which is a measurement for the quality of graph cluster, and the normalized mutual information
(NMI) [41], which is another metric (falling within the range [0, 1]) for evaluating the clustering accuracy, as
the model is trained. The results on Citeseer (rtrain = 0.7) are shown in Figure 6. We can observe that the test
accuracy and the modularity (clustering properties) improve synchronously over training. The results show that,
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as the training stage progresses, the invariant ego-subgraph generator is optimized so that it can generate more
informative invariant ego-subgraphs and therefore improve the performance on the testing set. On the other
hand, accurately discovering invariant ego-subgraphs can also promote identifying variant ego-subgraphs, which
capture the environment-discriminate features and better infer the latent environments. In addition, we observe
that the test accuracy and the NMI (clustering accuracy) also improve collectively over training. Notice that INL
achieves such results without needing any ground-truth environment label.

These empirical results well support the following points: (1) The invariant and variant patterns widely exist
in real-world graphs and our proposed INL can well identify invariant/variant ego-subgraphs under distribution
shifts with multiple latent environments. (2) The variant ego-subgraphs form clear clustering structures and our
INL can capture such patterns to accurately infer the environment labels of nodes. (3) Based on the inferred
environments, our INL learns node representations by the invariant ego-subgraph for each node so that it
can achieve better OOD generalization performance. The environment inference and invariance regularization
module can mutually enhance each other.

4.5 Ablation Studies
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Fig. 7. Ablation studies of our method. We plot the accuracy (%) on the Citeseer datasets with diferent strengths of spurious
correlations.

We perform ablation studies over the key components of the invariant ego-subgraph generator Ψ, i.e., masks
on node features and edges, to understand their functionalities more deeply. We compare INL with the following
two ablated versions: (1) w/o node feature mask: it removes the node feature mask by setting both invariant and
variant node features in the ego-graph Gv to Xv , i.e., X

I
v = X S

v = Xv . (2) w/o edge mask: it removes the edge
mask by setting both invariant and variant edges in the ego-graph Gv to Av , i.e., A

I
v = AS

v = Av . The results of
the two ablated versions drop compared with INL, as shown in Figure 7. The performance gaps between INL

and the two ablated versions become more signiicant as the degree of distribution shift increases (i.e., rtrain
from 1/3 to 0.7), which demonstrates the signiicance of accurately identifying the invariant node features and
edges by the learnable masks.
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4.6 Training dynamics

We can observe the convergence of our proposed method empirically, although the clustering objective in
environment inference (i.e., Eq. (4)) and invariance objective in invariance regularization (i.e., Eq. (8)) are iteratively
optimized. In Figure 8 (a)(b), we show the two objectives in the training process on Citeseer (rtrain = 0.7) and
OGB-Arxiv, respectively. The loss converges before reaching the maximal training epoch, while the results on
the other datasets show similar patterns.
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Fig. 8. The invariance objective and clustering objective in the training process on two datasets.

In Figure 9, we also show the objective of the inner iteration in Algorithm 1, i.e., the training dynamics of the
clustering objective in one epoch of the outer iteration. The epoch of the outer iteration is speciied as 100 and
250 for Citeseer (rtrain = 0.7) and OGB-Arxiv, respectively, which is the middle of the whole training process,
while the results in other epochs of the outer iteration show similar patterns.
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Fig. 9. The clustering objective in one epoch of the training process on two datasets.
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4.7 Time Complexity Analysis

The time complexity of the proposed INL is O ( |E | d + |V | d2), where |V | and |E | denotes the number of nodes
and edges, respectively, and d is the dimensionality of the node representations. Speciically, we adopt the
message-passing GNN which has a complexity ofO ( |E | d+ |V | d2) to instantiate the GNN components in INL, and
the GNNs are shared for all ego-graphs. Since we only need to generate mask for the existing edges in graphs, the
time complexity of generating invariant and variant ego-subgraphs and further obtaining their representations
is O ( |E | d + |V | d2). The time complexity of calculating the modularity matrix B in environment inference is

O ( |E |
(

d + |Einf er |
)

+ |V |
(

d + |Einf er |
)2
), where |Einf er | denotes the number of inferred environments. The

time complexity of the invariance regularizer is O ( |Einf er |d
2), as the number of parameters for most GNNs is

O (d2). Since |Einf er | are small constants, the overall time complexity of INL is O ( |E | d + |V | d2). In comparison,

the time complexity of other GNN-based node representation methods is also O ( |E | d + |V | d2). Therefore, the
time complexity of our proposed INL is on par with the existing methods.

In addition to the analysis of the time complexity, the empirical time cost of the proposed method and baselines
are also tested. We show the results on Citeseer (rtrain = 0.7) in Figure 10 while the results on other datasets
show similar patterns. The results indicate that INL does not introduce infeasible time cost for achieving the
best performances in practice. Its time cost for each training epoch is comparable with the baselines and more
eicient than some competitive methods, demonstrating the eiciency and efectiveness of our method.
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Fig. 10. The comparisons of empirical time cost per epoch during training our method and baselines on Citeseer (rtrain = 0.7).

4.8 Comparisons with GNNExplainer

Table 7. The results (ROC-AUC, %) of discovering the ground-truth invariant node features and edges on Citeseer.

Node Feature Mask Edge Mask

rtrain r = 1/3 r = 0.5 r = 0.7 r = 1/3 r = 0.5 r = 0.7

GNNExplainer 61.75±2.38 50.18±3.09 40.87±4.19 77.30±3.91 67.09±4.15 51.94±7.10
INL 68.04±2.19 69.18±2.06 70.16±2.54 78.68±3.10 79.09±3.21 80.51±3.13
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Fig. 11. Impact of the number of inferred environment |Einf er |. Red and blue lines denote the results of our INL and grey
dashed lines are the best results of all baselines.
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Fig. 12. Impact of the invariance regularizer coeficient λ. Red and blue lines denote the results of our INL and grey dashed
lines are the best results of all baselines.

We compare the output invariant node features and structures generated by the proposed INL and GN-
NExplainer [88] with the ground-truth on the synthetic dataset Citeseer. Speciically, we generate post-hoc
explanations from GNNExplainer as the identiied invariant ego-subgraphs, where we use the models trained
under ERM as the models to explain. The evaluation metric is ROC-AUC. The results in Table 7 show that the
masks on invariant node features and edges generated by GNNExplainer can be easily afected by the spurious
correlations. Moreover, even when spurious correlations do not exist, the ROC-AUC of masks on invariant node
features and edges generated by our INL still outperforms the result of the explainability method GNNExplainer,
showing the efectiveness of INL when identifying invariant patterns.

4.9 Hyper-parameter Sensitivity

We investigate the sensitivity of hyper-parameters of our method, including the number of inferred environments
|Einf er |, the invariance regularizer coeicient λ, and the number of epochs for clustering to infer environments
in each training epoch (i.e., Epoch_Cluster in Algorithm 1). For simplicity, we only report the results on Citeseer
(rtrain = 0.7) and OGB-Arxiv (2016-2018 with GraphSage backbone) in Figures 11-13 while the results on other
datasets show similar patterns.
First, the number of inferred environments has a slight impact on the model performance. For Citeseer, the

performance reaches a peak when |Einf er | = 3, showing that INL achieves the best result when the number of
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Fig. 13. Impact of the number of epochs for clustering to infer environments in each training epoch (i.e., Epoch_Cluster in
Algorithm 1). Red and blue lines denote the results of our INL and grey dashed lines are the best results of all baselines.

environments matches the ground truth. For OGB-Arxiv, the best number of environments is |Einf er | = 5. A
plausible reason is that OGB-Arxiv dataset consists of more nodes and edges, which form more environments than
Citeseer. Second, we also ind the coeicient λ has a slight inluence on the performance, indicating that we need
to properly balance the classiication loss and the invariance regularizer term. Finally, a proper value of the hyper-
parameter Epoch_Cluster is important. A small value may not be suicient to infer the environments accurately,
while a very large value is unnecessary and may afect the training eiciency. Although an appropriate choice of
hyper-parameters can further improve the performance, our method is not very sensitive to hyper-parameters.
Figures 11-13 show that INL can outperform the best baselines with a wide range of hyper-parameters choices.

5 RELATED WORKS

In this section, we review the related works of node representation learning, generalization of GNNs, explainability
of GNNs, invariant learning, and modularity.

5.1 Node Representation Learning

Node representation learning on graphs has been extensively studied such as random-walk based methods [19, 29,
63] and matrix factorization-based methods [10, 12, 62]. Recently, graph neural networks (GNNs) [28, 38, 75] have
revolutionized the ield of node representation learning [96]. They generally utilize a neighborhood aggregation
(or message passing) paradigm to capture the structural information within nodes’ neighborhood. The message
passing of the t-th layer in GNNs is usually denoted as:

Z
(t )
v = COMBINE(t ) (Z

(t−1)
v ,m

(t )
v ), m

(t )
v = AGGREGATION(t ) ({Z

(t−1)
u }), (25)

where u is the neighbor of node v . Z
(t )
v represents the embedding of node v at the t-th layer and Z

(0)
v is initialized

with the input node feature.m
(t )
v represents the aggregated message from the neighbors of nodev . COMBINE(t ) (·)

and AGGREGATION(t ) (·) are the combination and aggregation functions of GNNs [89]. Many GNNs and their
variants [30, 46, 53, 59, 90, 98] have been proposed, achieving state-of-the-art performance on various tasks
and demonstrating profound successes in challenging applications, such as recommendation systems [9, 26, 31,
77, 83], information retrieval [17, 91, 95], drug discovery [18, 80], protein function prediction [33, 36], traic
forecasting [21, 37], etc. However, most existing GNNs do not consider the out-of-distribution generalization
ability, so that their performances drop substantially on testing data with distribution shifts [33, 44, 80].
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5.2 Generalization of GNNs

A few recent works begin to study the generalization ability of GNNs. The early works [27, 48, 66, 76] focus on
the generalization bounds over the training distribution, i.e., in-distribution generalization, which is orthogonal
to the OOD generalization and not suitable for the distribution shifts studied in this paper. More recently, the
OOD generalization ability of GNNs starts to receive research interest [7, 39, 43, 58, 79, 82, 87]. In particular,
Bevilacqua et al. [7] learn size-invariant representations for tackling the distribution shifts that exist on graph
size. DIR [79] is proposed to discover invariant rationales for GNNs. GIL [45] focuses on capturing the invariant
relationships between predictive graph structural information and labels under distribution shifts for OOD
generalization. These works mostly concentrate on graph-level tasks and largely ignore the more challenging
node-level tasks with multiple latent environments. Some works [24, 54, 99] are proposed to deal with semi-
supervised node classiication under non-I.I.D. setting. They focus on the adaptation ability of GNNs under
distribution shifts, i.e., transferring GNN models trained on the source domain (i.e., environment) to the related
target domain with diferent distributions. For example, SR-GNN [99] is proposed to handle distribution shifts
between the selected training and testing nodes by adopting CMD [93] and importance sampling. The work [24]
proposes to learn GNN models by considering agnostic label selection bias. However, these works assume
that test data are available and will participate in the training process, which is not in the scope of the OOD
generalization problem studied in this paper. One exception is the very recent pioneering work EERM [78] which
studies invariant node learning by assuming all nodes share a single environment. However, it ignores the more
common and challenging situation that nodes are from multiple latent environments. We empirically show
that our proposed method greatly outperforms EERM by efectively identifying and modeling multiple latent
environments.

5.3 Explainability of GNNs

The studies on the explainability of GNNs aim to understand the predictions of black-box GNNs by providing
the explanations [20, 72, 92]. They generally try to answer which nodes, edges, or features of the input graph
are more important for predicting the labels. Several works are proposed to ind a subgraph structure and a
small subset of node features for the target nodes as the explanations for GNN’s predictions [49, 52, 88]. For
example, GNNExplainer [88] learns the soft masks on edges and node features to explain the predictions with
the mask optimization. PGExplainer [52] further learns the approximated discrete masks on edges to explain
the predictions with a parameterized mask predictor. GraphMask [68] is a post-hoc method for explaining the
importance of edges in the graph convolution layer. A recent work [79] inds that these explainability works are
very sensitive to distribution shifts as most GNN models and proposes discovering invariant explanations in
graph-level classiication tasks. However, these works focus on understanding the predictions of GNNs instead of
learning node representations for better generalization ability under distribution shifts studies in this paper.

5.4 Invariant Learning

Invariant learning has received surging attentions to enable OOD generalization, aiming to generalize to unseen
environments by exploiting the invariant relationships between features and labels across distribution shifts.
Several works [2, 4, 11, 40, 42, 64] are proposed to learn invariant model and show guaranteed generalization
under distribution shifts. However, most existing methods heavily rely on additional environment labels that
have to be explicitly provided in the training dataset. Such annotations for the nodes on graph data are usually
unavailable and prohibitively expensive to collect, leading that these invariant learning methods inapplicable. A
few works study OOD generalization on latent environments in computer vision [16, 51, 56], which cannot be
directly applied to graph data. In summary, how to learn invariant node representations under distribution shits
without explicit environment labels remains largely unexplored in the literature.
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5.5 Modularity

The Modularity is generally used to measures the divergence between the number of intra-cluster edges and
the expected number of a random graph [60], where nodes v and u with degrees dv and du are connected with
probability dvdu/2m andm is the edge number. By maximizing the modularity, the nodes are densely connected
within each cluster [73]:

max
C

Q =
1

2m
trace

(

C⊤AC −
1

2m
diag
(

C⊤dd⊤C
)

)

, (26)

where C is a cluster assignment matrix and A is the adjacency matrix of the input graph for clustering. d andm
indicate the degree vector and the number of edges, respectively. However, there are two obstacles for directly
adopting this classical modularity maximization method to learn cluster assignment as the inferred environments.
The irst is that the modularity maximization ignores the inter-cluster edges whose connecting probability should
be minimized in the meantime. The second is that we should use the variant patterns (X S ,AS ) of the input graph
for clustering rather than use the whole input graph (X ,A). Since the invariant patterns capture the invariant
relationships between predictive node features and graph structures with the node labels, the variant patterns in
turn capture variant spurious correlations under diferent distributions.

6 CONCLUSIONS

In this paper, we study learning invariant node representations under distribution shifts with multiple latent
environments and propose a principled and novel method (INL). The proposed method can identify the invariant
and variant ego-subgraphs of nodes, infer the environment label of nodes without supervisions, and learn
invariant node representations through regularization. Extensive experiments on both synthetic and real-world
node classiication benchmarks demonstrate the superiority of our method against state-of-the-art baselines
when there exist distribution shifts.

APPENDICES

A PROOFS

A.1 Proof of Proposition 3

Proof. Let aI, Iv =
1
|N I

v |

∑

u ∈N I
v
x Iu be the aggregated invariant node features from invariant ego-subgraph G I

v .

Similarly, we deine aS, Iv =
1
|N I

v |

∑

u ∈N I
v
xSu , a

I,S
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1
|N S

v |

∑

u ∈N S
v
x Iu , and aS,Sv =

1
|N S

v |

∑

u ∈N S
v
xSu . The irst and

second superscript of av indicate the invariant/variant node features and structures, respectively. We further
denote e Iv =

1
|N I

v |

∑

u ∈N I
v
eu , and e

S
v =

1
|N )Sv |

∑

u ∈N S
v
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(27)
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The irst-order derivative w.r.t. θ1 is:
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2
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I, I
v

]
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2
(
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I, I
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(28)

where the second equation holds because aI, Iv is independent with ϵ1, ϵ2, e
I
v , and e

S
v . Therefore, let

∂R
∂θ1
= 0, we

have
1
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v a
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v a

I,S
v

]

= 0 (29)

The irst-order derivative w.r.t. θ2 is:
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(30)

where the second equation holds because of the independence among aI, Iv , ϵ1, ϵ2, and e
I
v or eSv . The third equation

holds since we let ∂R
∂θ1
= 0. The last equation holds since ϵ1 and ϵ2 follow standard normal distribution. We further

let ∂R
∂θ2
= 0 and obtain:
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= 0. (31)

Similarly, let ∂R
∂θ3
= 0, we have
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And let ∂R
∂θ4
= 0, we have
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= 0. (33)

Finally, given Eqs. (29) (31) (32) (33), we can derive the solution:

θ1 = 1 −
µS

2(µS − µ I )
, θ2 =

µS

2(µS − µ I )
, θ3 =

µ I

2(µS − µ I )
, θ4 =

−µ I

2(µS − µ I )
. (34)

□
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A.2 Proof of Proposition 4

Proof. If the invariance regularizer trace
(

VarEinf er (∇θR
e )
)

in Eq. (8) reaches theminimum,we have trace
(

VarEinf er (∇θR
e )
)

=

0. It means that the variance of ∂Re
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among all environments is 0, i.e., ∂Re
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keeps invariant between any two

environments, i = 1, 2, 3, 4. Recall that
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and
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Therefore, ∂Re

∂θi
can keep invariant between any two environments for i = 1, 2, 3, 4, only when satisfying

θ3 + θ4 = 0, θ2 = 0, and θ4 = 0, Finally, optimizing the invariance regularizer in Eq. (8) to the minimum can lead
to [θ2,θ3,θ4] = [0, 0, 0], so that the model can make predictions only based on the invariant patterns and achieve
promising OOD generalization under distribution shifts. □
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