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Abstract—Self-supervised learning for graph neural networks has attracted considerable attention and shows notable successes in
graph representation learning. However, the formation of a real-world graph typically arises from highly complex interactions of many
latent factors. The existing self-supervised learning methods for GNNs are inherently holistic and neglect the entanglement of the latent
factors, resulting in suboptimal learned representations for downstream tasks and difficult to be interpreted. Learning disentangled graph
representations with self-supervised learning poses great challenges and remains largely ignored by the existing literature. In this paper,
we introduce Independence Promoted Disentangled Graph Contrastive Learning (IDGCL) method, which can learn disentangled
graph-level representations with self-supervision. In particular, we first identify the latent factors of the input graph and derive its factorized
representations. Then we propose a factor-wise discrimination objective in a contrastive learning manner, which can force the factorized
representations to independently reflect the expressive information from different latent factors. To further promote the independence
between the representations, we employ the Hilbert-Schmidt Independence Criterion to eliminate the dependence among different
representations, which is effectively integrated into the self-supervised framework as a regularizer. Extensive experiments on synthetic
and real-world datasets demonstrate the superiority of our method against several state-of-the-art baselines.

Index Terms—Graph Data Mining, Graph Neural Network, Self-supervised Learning, Disentangled Representation Learning.

✦

1 INTRODUCTION

G RAPH structured data is ubiquitous in the real world,
e.g., social networks, biology networks, traffic networks,

etc. Recently, graph neural networks (GNNs) have become
increasingly prevalent in learning graph representations in a
supervised manner, demonstrating their strength in a wide
variety of research fields [1–4]. GNNs require task-dependent
annotated labels to learn effective representations, which are
extremely scarce, or even unavailable in practice, thus mo-
tivating the advent of self-supervised graph representation
learning.

Contrastive learning, as a discriminative approach pulling
similar samples close and pushing dissimilar samples far
away, has become a dominant strategy in self-supervised
graph representation learning [5–11]. Despite their notable
successes, the existing graph contrastive learning methods
generally adopt a holistic scheme, i.e., the learned representa-
tions characterize graphs as a perceptual whole, ignoring the
nuances between different aspects of the graph. In fact, the
formation of a graph typically follows a relational process
in the real world, driven by many complex latent factors.
For example, in social networks, a social group may have
several communities originated from different relations (e.g.,
friends, colleagues, etc.) or interests (e.g., sports, games, etc.)
[12]. And a molecular graph may consist of various groups
of atoms and bonds representing different functional units
[13]. The complex relations among the multiple latent factors
bring an urge for disentangling these factors in contrastive
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graph representation learning, which remains unexplored by
the existing holistic works. As a result, the graph represen-
tations learned by the existing methods contain a mixture
of entangled factors, harming interpretability and leading
to suboptimal performance for predictive tasks involving
whole graph representations.

In this paper, we propose to learn disentangled con-
trastive graph representation. Although disentangled repre-
sentation learning, which aims to characterize the various
underlying explanatory factors behind the observed data
in different parts of the factorized representations [14, 15],
has been demonstrated to be more explainable [12] and
generalizable [14], disentangled graph contrastive learning
faces the following three challenges. (1) Tailored graph
encoder for disentangled contrastive learning. The graph
encoder should be carefully designed so that it can be
sufficiently expressive to infer the disentangled latent factors
in the graph. (2) Tailored discrimination tasks designed
for disentangled graph contrastive learning. Since task-
dependent labels are not available in the self-supervised
setting, disentangled graph contrastive learning can only
utilize the limited amount of self-supervision information.
This implies that the discrimination tasks should be well-
designed for disentangled contrastive representation learning
on graphs. (3) Tailored training scheme to enforce the
independence of the representations. The disentangled graph
representations are expected to capture mutually exclusive
information in terms of the latent factors. Therefore, the sta-
tistical independence among different latent representations
should be effectively formulated, which can promote the
quality of disentangled representations of the graph.

To tackle these challenges, we propose a novel indepen-
dence promoted disentangled graph contrastive learning
model (IDGCL) capable of disentangled contrastive learning
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on graphs. In particular, we first design a disentangled
graph encoder whose key ingredient is a multi-channel
message-passing layer. Each channel is tailored to aggregate
features only from one disentangled latent factor. Then a
separate readout operation in each channel summarizes the
specific aspect of the graph according to the corresponding
latent factor, so as to produce the disentangled graph
representation. Next, we conduct contrastive learning in
each representation subspace characterized by each factor
independently instead of in the whole representation space.
This novel factor-wise contrastive approach can ensure that
each disentangled factor of the vectorized representations is
sufficiently discriminative only under one specific aspect of
the whole graph. Thus the representations are encouraged to
be disentangled and best characterize the aspect pertinent to
a latent factor of the graph. In addition, to further promote
the independence among different latent representations, we
eliminate the statistical dependence among different channels
of the representations with Hilbert-Schmidt Independence
Criterion (HSIC) [16], a kernel-based metric. The factor-
wise contrastive representation learning and independence
regularization are jointly optimized in a unified framework,
so that the disentangled graph encoder can produce better
disentangled graph representations. Compared with the
existing methods, our proposed model encodes a graph with
multiple disentangled representations, making it possible to
explore the meaning of each channel, which benefits in more
explainability for producing graph representations.

We conduct extensive experiments on both synthetic
graph dataset and empirical well-known graph benchmarks.
The results show that the representations learned from
IDGCL can achieve substantial performance gains on the
downstream graph classification task compared with various
state-of-the-art baselines.

The contributions of this paper are summarized as
follows:

• We propose a novel independence promoted disen-
tangled graph contrastive learning model (IDGCL),
which is able to learn disentangled graph representation
via factor-wise contrastive learning and independence
regularization. To the best of our knowledge, we are
the first to study disentangled self-supervised graph
representation learning with independence promotion.

• We propose a disentangled graph encoder to capture
multiple aspects of graphs through learning disentan-
gled latent factors on graphs. We further present the
factor-wise contrastive learning approach on tailored
discrimination tasks in terms of each latent factor
independently.

• We present a kernel-based Hilbert-Schmidt Indepen-
dence Criterion (HSIC) to measure dependence among
the representations in terms of different latent factors
effectively and accurately. The factor-wise contrastive
learning and independence regularization are jointly
optimized in a unified framework so that the learned
representation can better capture predictive and mutu-
ally independent information.

• We conduct extensive experiments to verify the efficacy
of our proposed model for the graph classification
task. The results on several graph classification datasets
demonstrate that IDGCL achieves state-of-the-art per-

formance by significantly outperforming the baselines.
This manuscript is an extension of our paper published

at NeurIPS 2021 [17]. Compared with the conference version,
we make significant contributions from the following aspects:

• The newly proposed IDGCL model is able to learn
disentangled self-supervised graph representation via
explicit enforcing independence between the latent rep-
resentations so as to improve the quality of disentangled
graph representations.

• The proposed independence regularization can measure
dependence among the representations in terms of
different latent factors accurately and without inducing
high time complexity costs.

• IDGCL can simultaneously integrate factor-wise con-
trastive learning and independence among different
representations into a unified framework for joint opti-
mization.

• More extensive experiments demonstrate that IDGCL is
able to outperform baseline approaches and the original
model proposed in the earlier conference paper.

We introduce the problem formulation and preliminaries
in Section 2. In Section 3, we describe the details of our
proposed method. Section 4 presents the experimental results,
including quantitative and qualitative comparisons. We
review the related work in Section 5. Finally, we conclude
our work in Section 6.

2 PROBLEM FORMULATION AND PRELIMINARIES

2.1 Problem Formulation

Let G = {Gi}Ni=1 be a graph dataset with N graphs. The key
of most self-supervised graph representation learning meth-
ods, including ours, is to derive a graph encoder f(·), which
outputs a d-dimensional representation zi = f(Gi) ∈ Rd

for each input graph, such that Z = {zi}Ni=1 best describes
G. In this work, we aim to learn a multi-channel graph
encoder fθ(·) with parameters θ, so that the output zi
is a disentangled representation, i.e. fθ(·) = {f (k)

θ (·)}Kk=1,
where K is the number of channels. To be specific, zi is
expected to be composed of K independent components,
i.e., zi = [zi,1, zi,2, . . . , zi,K ], where zi,k = f

(k)
θ (Gi) ∈ R∆d,

k ∈ [1,K],∆d = d/K, assuming that there are K latent
factors behind the graph instances to be disentangled. The
kth component zi,k is for characterizing the aspect of Gi that
is pertinent to factor k accurately. We also assume that the
value of zi,k will be merely a white noise vector if the input
graph Gi does not contain any information of factor k. Here
we follow the notion in disentangled representation learning
literature [12, 14, 15, 18, 19], which assumes the existence of
various natural factors that vary independently behind the
observed data. The goal is to learn factorized representations
where each of them independently reflects the expressive
information specific to only one single ground truth factor.
Therefore, the setting where the raw data has highly related
features is out of scope for this work.

2.2 Preliminaries on Contrastive Learning

Unlike generative models, contrastive learning is an instance-
wise discriminative approach that aims at making similar
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Fig. 1: The framework of our proposed IDGCL model. (1) The input graph Gi undergoes graph augmentations to produce
G′

i. Then Gi and G′
i are fed into the shared disentangled graph encoder fθ(·). (2) In the encoder fθ(·), the node features H0

are first aggregated by L message-passing layers and then taken as the input of a multi-channel message-passing layer. (3)
Based on the disentangled graph representation zi, the factor-wise contrastive learning aims to maximize the agreement
under each latent factor. (4) The disentangled representations of different latent factors are encouraged to be sufficiently
independent by using the HSIC regularization. The joint optimization of factor-wise contrastive learning and independence
regularization provides feedback for the encoder to improve the disentanglement. The illustration assumes that there are
three latent factors, corresponding to the three channels.

instances closer and dissimilar instances far from each other
in representation space [20, 21]. It treats each instance in the
dataset as a distinct class of its own and trains a classifier
to distinguish between individual instance classes [22, 23].
Given a dataset X = {xi}Ni=1, each instance xi is assigned
with a unique surrogate label yi, since no ground-truth labels
are given. yi is often regarded as the ID of the instance in the
dataset, i.e., yi = i. So the probability classifier is defined as:

pθ(yi|xi) =
exp ϕ(vi, v

′
yi
)∑N

j=1 exp ϕ(vi, v′yj
)
, (1)

where θ denotes the parameters of the encoder. Both vi and
v′yi

are the embeddings from xi, which are generated from
two different encoders [24], or a shared encoder [25]. Before
being passed into the encoder, the input xi could undergo
data augmentations [25], which play a critical role in defining
effective predictive tasks for learning the encoder. ϕ is the
similarity function, often adopting cosine similarity with
temperature τ [26], i.e., ϕ(vi, v′yi

) = v′⊤yi
vi/τ , assuming the

embeddings are ℓ2-normalized. Then the learning objective
is to maximize the joint probability

∏N
i=1 p(yi|xi) over

the dataset, namely minimize the negative log-likelihood
function

∑N
i=1 ℓi, if let ℓi = −log p(yi|xi). Note that loss ℓi

could be NCE loss [22], InfoNCE loss [27], or NT-Xent loss
[25]. The encoder will be encouraged to learn a representation
space where samples (e.g., augmented data) from the same
instance (e.g., an image, a graph) are pulled closer and
samples from different instances are pushed apart [20]. For
convenience, we follow the settings above in this work.

3 METHODOLOGIES

In this section, we present the proposed IDGCL model. The
framework of IDGCL is shown in Figure 1. In Section 3.1,

we introduce the disentangled graph encoder to identify the
complex latent factors and capture multiple aspects of graphs.
Then in Section 3.2, we propose a factor-wise contrastive
learning approach to conduct instance discrimination under
each latent factor independently. We derive the Evidence
Lower Bound in Section 3.3 and introduce the regularizer for
independence promotion in Section 3.4. Finally we describe
the objective, which jointly optimizes factor-wise contrastive
learning and independence promotion in a unified frame-
work in Section 3.5, followed by discussions regarding time
complexity and number of parameters in Sectiion 3.6.

3.1 Disentangled Graph Encoder
The key of the disentangled graph encoder is to produce
the factorized graph representation zi = [zi,1, zi,2, . . . , zi,K ]
for each input graph Gi ∈ G. Based on the factorized
representation, we can infer the latent factors of the graph.

Generally, GNNs use graph structure and node features
to learn the representation vector hv of node v with a
message-passing mechanism, i.e., iteratively updating the
node representation by aggregating representations of its
neighbors. The propagation of the lth layer is formulated as:

hl
v = COMBINEl(hl−1

v ,AGGREGATEl({hl−1
u : u ∈ N (v)})),

(2)
where hl

v is the representation of node v at the lth layer
and h0

v is initialized with node features. N (v) is the neigh-
borhood to node v. We use the term GNN to indicate the
message-passing layer in Eq. (2).

Let Hl = {hl
v|v ∈ V } be the node embeddings after the

lth GNN, where V denotes the node set of the graph. After
applying L traditional message-passing layers, we propose
a graph-disentanglement layer to learn the disentangled
representations. The goal is to extract features specific to each
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latent factor with a separate channel. Specifically, we adopt
K separate channels to identify the complex heterogeneous
latent factors and capture multiple aspects of the input graph.
For each channel, we first utilize a GNNk to propagate in-
formation with its own parameters: HL+1

k = GNNk(H
L, A),

where A is the adjacency matrix of the input graph. HL+1
k

is the node embeddings which is only pertinent to the kth

latent factor. Then the READOUT function (i.e., pooling
function) of each channel is used to summarize all the
obtained node representations into a fixed-length graph-level
representation: hGi,k = READOUTk({HL+1

k }). Finally,
each channel outputs the factorized graph representation
with a separate MLP: zi,k = MLPk(hGi,k).

Compared with the existing inherently holistic graph
encoders, our disentangled graph encoder consists of K
channels, rending the possibility to identify the complex
heterogeneous latent factors and capture multiple aspects of
graphs.

3.2 Disentangled Factor-wise Contrastive Learning
Unlike the existing contrastive learning methods, IDGCL
designs a novel factor-wise instance discriminative task and
learns to solve this task under each latent factor indepen-
dently. This design not only makes similar samples closer and
dissimilar samples far from each other in the representation
space, but also encourages the learned representation to
incorporate factor-level information for disentanglement.

Specifically, the formation of real-world graphs is usually
driven by multiple latent heterogeneous factors. So the
instance discriminative task should be represented as the
expectation of several subtasks under the latent factors:

pθ(yi|Gi) = Epθ(k|Gi) [pθ(yi|Gi, k)] . (3)

Here pθ(k|Gi) is the probability distribution over latent
factors for the input graph Gi. pθ(yi|Gi, k) denotes the
instance discrimination subtask under the kth latent factor.

Firstly, given the representation zi of Gi derived from the
disentangled graph encoder fθ(·), we present a prototype-
based method to obtain pθ(k|Gi). We introduce K latent
factor prototypes {ck}Kk=1, and the probability of the kth

latent factor reflected in Gi is parameterized as:

pθ(k|Gi) =
exp ϕ(zi,k, ck)∑K
k=1 exp ϕ(zi,k, ck)

, (4)

where ϕ is the cosine similarity with temperature τ ,
i.e., ϕ(a,b) = COSINE(a,b)/τ and COSINE(a,b) =
a⊤b/(∥a∥2 ∥b∥2).

Then, we define the instance discrimination subtask
under the kth latent factor as:

pθ(yi|Gi, k) =
exp ϕ(zi,k, z

′
yi,k

)∑N
j=1 exp ϕ(zi,k, z′yj ,k

)
, (5)

where zi,k and z′yi,k
are the disentangled representations

produced by the shared graph encoder, and yi is the unique
surrogate label (see Section 2) of the graph Gi. We follow
[22, 23] to implement yi as the ID of the graph in the dataset,
i.e., yi = i. For notation convenience, we do not distinguish
yi and i hereafter when there is no risk of confusion.

Next, we describe the process to get z′i,k (i.e., z′yi,k
in

Eq. (5)). First, the input graph Gi undergoes graph data

augmentations to obtain its correlated views G′
i, and they

form a positive pair. Data augmentation is expected to create
novel and realistically rational data by applying certain
transformations that do not affect the label, and plays a
critical role in defining effective predictive tasks [11, 25].
We follow [11] to adopt four types of graph augmentation
strategies, including node dropping, edge perturbation,
attribute masking, and subgraph sampling. More details
of graph augmentations can be found in appendix. Then, the
augmented graph G′

i is also fed into the shared disentangled
graph encoder fθ(·) to produce z′i,k (i.e., z′yi,k

). Given the
disentangled representations zi,k and z′i,k of the Gi and G′

i

respectively, we conduct factor-wise contrastive learning for
each latent factor independently as Eq. (5).

3.3 Evidence Lower Bound (ELBO)
We present the objective of our method. Following the exist-
ing methods [22, 23], we aim to maximize the joint probability∏N

i=1 p(yi|Gi) over the graph dataset G = {Gi}Ni=1. We learn
the model parameters θ by maximizing the log-likelihood:

θ∗ = argmax
θ

N∑
i=1

log pθ(yi|Gi)

= argmax
θ

N∑
i=1

log Epθ(k|Gi) [pθ(yi|Gi, k)] .

(6)

However, directly maximizing the log-likelihood function is
difficult because of the latent factors. Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-
likelihood function given by Theorem 1.

Theorem 1. The log likelihood function of each graph
log pθ(yi|Gi) is lower bounded by the ELBO: L(θ, i) =
Eqθ(k|Gi,yi)[log pθ(yi|Gi, k)]−KL(qθ(k|Gi, yi) ∥ pθ(k|Gi)).

Proof.

log pθ(yi|Gi)

= Eqθ(k|Gi,yi) [log pθ(yi|Gi)]

= Eqθ(k|Gi,yi)

[
log

pθ(yi, k|Gi)

pθ(k|Gi, yi)

]
= Eqθ(k|Gi,yi)

[
log

pθ(yi, k|Gi)

qθ(k|Gi, yi)

qθ(k|Gi, yi)

pθ(k|Gi, yi)

]
= Eqθ(k|Gi,yi)

[
log

pθ(yi, k|Gi)

qθ(k|Gi, yi)

]
+ Eqθ(k|Gi,yi)

[
log

qθ(k|Gi, yi)

pθ(k|Gi, yi)

]
= Eqθ(k|Gi,yi)

[
log

pθ(yi, k|Gi)

qθ(k|Gi, yi)

]
+KL(qθ(k|Gi, yi)∥pθ(k|Gi, yi))

≥ Eqθ(k|Gi,yi)

[
log

pθ(yi, k|Gi)

qθ(k|Gi, yi)

]
= Eqθ(k|Gi,yi)

[
log pθ(yi|Gi, k)

pθ(k|Gi)

qθ(k|Gi, yi)

]
= Eqθ(k|Gi,yi) [log pθ(yi|Gi, k)]−KL (qθ (k|Gi, yi) ∥ pθ (k|Gi))

= L(θ, i).

KL(·∥·) means Kullback–Leibler divergence [28]. The equality
holds when KL(qθ(k|Gi, yi) ∥ pθ(k|Gi, yi)) = 0. Note that
in the third-to-last line above, we have used pθ(yi, k|Gi) =
pθ(k|Gi)pθ(yi|Gi, k).

To make the ELBO as tight as possible, we require that
qθ(k|Gi, yi) is close to pθ(k|Gi, yi), whose detailed imple-
mentations are provided in Eq. (9) and Eq. (7). In the ELBO
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L(θ, i), pθ(yi|Gi, k) and pθ(k|Gi) have been introduced
in Eq. (5) and Eq. (4), respectively, and qθ(k|Gi, yi) is a
variational distribution to infer the posterior distribution
of the latent factors after observing both Gi and its correlated
view G′

yi
.

We introduce a variational distribution qθ(k|Gi, yi) to
infer the posterior probability pθ(k|Gi, yi) that is defined
with Bayes’ theorem as follows:

pθ(k|Gi, yi) =
pθ(k|Gi)pθ(yi|Gi, k)∑K
k=1 pθ(k|Gi)pθ(yi|Gi, k)

. (7)

pθ(k|Gi, yi) is the probability of the kth latent factor per-
tinent to both Gi and the augmented G′

i simultaneously.
Compared with the prior distribution pθ(k|Gi) in Eq. (4),
pθ(k|Gi, yi) incorporates more useful information (i.e., factor-
wise similarity) from pθ(yi|Gi, k). Although both pθ(k|Gi)
and pθ(k|Gi, yi) are designed to infer the latent factor
distribution, pθ(k|Gi) is calculated only given the graph
Gi, but pθ(k|Gi, yi) is calculated after observing Gi, the
augmented version G′

yi
, and their similarities under the

specific latent factor.
However, we cannot compute the posterior probability

tractably because of the term pθ(yi|Gi, k). If we directly
calculate pθ(yi|Gi, k) according to Eq. (5), all the instances in
the dataset G are needed for computing the denominator in
Eq. (5) , which could be computationally prohibitive [22, 23,
29]. To tackle this obstacle, several strategies are proposed
in the literature, including memory bank [22, 24], dynamic
dictionary [30], NT-Xent loss [25]. Here, we adopt NT-Xent
loss on a minibatch B ⊆ G. So in practice, the instance
discrimination under each latent factor is calculated by:

p̂θ(yi|Gi, k) =
exp ϕ(zi,k, z

′
i,k)∑|B|

j∈B,j ̸=i exp ϕ(zi,k, z′j,k)
. (8)

We approximate the posterior probability pθ(k|Gi, yi) with a
variational distribution defined as:

qθ(k|Gi, yi) =
pθ(k|Gi)p̂θ(yi|Gi, k)∑K
k=1 pθ(k|Gi)p̂θ(yi|Gi, k)

. (9)

Our method can inherently encourage disentanglement
since factorizing the instance discrimination into K factor-
wise subtasks will enforce the independence of the learned
graph representation zi. Besides, qθ(k|Gi, yi) is computed
based on kth and other K − 1 latent factors. Thus, the graph
encoder is forced to preserve exclusive information in each
channel to get more accurate approximation to the posterior,
if a tighter ELBO is expected. The strong inductive biases in
our proposed method encourage to learn disentangled graph
representations that match the ground truth factors behind
the graphs.

3.4 Statistical Independence of Representations

Enhancing the independence of the disentangled graph
representations explicitly will encourage the graph encoder
to better capture predictive and mutually independent
information in terms of different latent factors, which can
lead to improved performance for downstream tasks. Next
we elaborate on the details of independence regularization.

Recall that the goal of our method is to empower the
graph encoder to produce the disentangled graph representa-
tions zi = [zi,1, zi,2, . . . , zi,K ] for each input graph Gi ∈ G
that the K channels capture mutually exclusive information
in terms of the latent factors. This means the statistical
independence among the disentangled graph representations
should be further promoted to enhance the disentanglement.
For measuring the independence among the disentangled
graph representations, it is infeasible to resort to histogram-
based measures unless the dimensionality of representa-
tions is small enough [31]. Therefore, we introduce Hilbert-
Schmidt Independence Criterion (HSIC) [16] for promoting
the representations of different factors to be sufficiently
independent.

Specifically, let z∗,k be the ∆d-dimensional (∆d = d/K)
random variable denoting the disentangled representations
corresponding to the latent factor k. Consider a measurable,
positive definite kernel κk on the domain of random variable
z∗,k and denote the corresponding Reproducing Kernel
Hilbert Spaces (RKHS) by Hk. ϕk(·) is the transformation
function mapping z∗,k into Hk with respect to the kernel κk.

For a pair of latent factors kA, kB ∈ [1,K], kA ̸= kB ,
z∗,kA

and z∗,kB
are jointly drawn from a distribution

p(z∗,kA
, z∗,kB

). Cz∗,kA
,z∗,kB

, the cross-covariance operator
in the RKHS of κkA

and κkB
, is defined as follows:

Cz∗,kA
,z∗,kB

= Ep(z∗,kA
,z∗,kB

)

[
(ϕkA

(z∗,kA
)− µz∗,kA

)⊤·

(ϕkB
(z∗,kB

)− µz∗,kB
)
]
,

(10)
where µz∗,kA

= Ep(z∗,kA
) [ϕkA

(z∗,kA
)] and µz∗,kB

=
Ep(z∗,kB

) [ϕkB
(z∗,kB

)]. HSIC, the Hilbert-Schmidt norm of
the associated cross-covariance operator, is defined as:

HSIC(z∗,kA
, z∗,kB

) := ∥Cz∗,kA
,z∗,kB

∥2HS, (11)

where ∥M∥2HS =
∑

i,j M
2
i,j . The independence can be

determined by the following proposition.

Proposition 1. Assume E[κz∗,kA
(z∗,kA

, z∗,kA
)] < ∞ and

E[κz∗,kB
(z∗,kB

, z∗,kB
)] < ∞, and κz∗,kA

κz∗,kB
is a charac-

teristic kernel, then

HSIC(z∗,kA
, z∗,kB

) = 0⇔ z∗,kA
⊥⊥ z∗,kB

. (12)

In practice, we employ an unbiased estimator of HSIC
following [32]:

HSIC(z∗,kA
, z∗,kB

) =
1

m(m−3)

[
tr
(
Ũ Ṽ T

)
+ 1T Ũ11T Ṽ T 1

(m−1)(m−2) −
2

m−21
T Ũ Ṽ T1

]
(13)

where Ũ , Ṽ are the Gram matrices with κz∗,kA
, κz∗,kB

, whose
diagonal entries are set to zero. We use the radial basis
function (RBF) kernel in our implementation.

The main advantages of adopting the above criterion
to measure the dependence of graph representations are
three-fold [16, 33]. (1) Since graph representations are
mapped into the RKHS to measure the dependence, the
correlations measured in that space correspond to high-
order joint moments between the original distributions and
more complex nonlinear dependence can be addressed. (2)
HSIC is effective yet efficient to estimate the dependence
of graph representations since it avoids to estimate the
joint distribution of the random variables explicitly. (3) The
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estimator we adopted for HSIC is unbiased [32], as opposed
to other empirical estimates [16].

3.5 Optimization

Finally, we seek to learn the parameters θ of the disentangled
graph encoder under the unified framework of factor-wise
contrastive learning and independence promotion. We opti-
mize the following objective function by combining the ELBO
and HSIC regularizer using mini-batch gradient descent:

min
θ
−L(θ,B) + λLreg (14)

where λ ≥ 0 is a hyper-parameter that controls the impact
of the regularizer. More specifically, the ELBO L(θ,B) over a
mini-batch B is calculated by:

L(θ,B) =
∑
i∈B
L(θ, i), (15)

where L(θ, i) is defined in Theorem 1. The HSIC regularizer
Lreg for promoting the statistical independence among the
disentangled graph representations is calculated by:

Lreg =
∑

1≤kA<kB≤K

HSIC(z∗,kA
, z∗,kB

). (16)

Note that the HSIC regularizer can be easily calculated
since it is only based on the output disentangled graph
representation (i.e., the parameters θ of the disentangled
graph encoder) without other assumptions.

We use IDGCL (Independence promoted Disentangled
Graph Contrastive Learning) to refer to our proposed model
and its detailed training procedure is shown in Algorithm 1.

3.6 Discussions

3.6.1 Time Complexity Analysis
The time complexity of our proposed IDGCL is O(L |E| d+
L |V | d2), where |V |, |E| denotes the total number of nodes
and edges in the graphs, d is the dimensionality of the repre-
sentation, and L is the number of message-passing layers of
disentangled graph encoder. Specifically, we instantiate our
method by adopting GIN [4] as the message-passing layers
so the time complexity of each layer in the disentangled
graph encoder is O(|E| d + |V | d2). As for the factor-wise
contrastive learning, the positive and negative samples are
drawn from graph data augmentations and graphs from
the same minibatch respectively, so the time complexity is
O(|B|2d), where |B| is the batch size. The calculation of HSIC
regularizer in IDGCL has a time complexity of O(|B|2d2).
Notice that |B| and d are small constants that are unrelated
to the dataset size.

In comparison, the time complexity of other representa-
tive self-supervised graph learning methods (e.g., GraphCL
and MVGRL, see the Experiment Section for details) is also
O(L |E| d+ L |V | d2). Therefore, the time complexity of our
IDGCL is on par with these baselines. Some unsupervised
baseline, such as GVAE, has a O(L |E| d+ L |V | d2 + |V |2 d)
time complexity due to the reconstruction of the adjacency
matrix in the VAE framework. Since O(|E|)≪ O(|V |2) for
sparse graphs, and L and d are small constants, our proposed
method is much more scalable than GVAE.

Algorithm 1 The training procedure of IDGCL.

Input: A graph dataset G = {Gi}Ni=1

Output: The disentangled representations Z = {zi}Ni=1

1: function DISENTANGLEDENCODER(Gi)
2: for l← 1 to L do
3: Hl = GNNl(Hl−1, A)
4: end for
5: for k ← 1 to K do ▷ separate K channels
6: HL+1

k = GNNk(H
L, A)

7: zi,k = MLPk(READOUTk({HL+1
k }))

8: end for
9: return zi ▷ disentangled graph representation

10: end function
11: for sampled minibatch B = {Gi}|B|

i=1 do
12: for Gi ∈ B do ▷ disentangled graph encoding
13: zi = DISENTANGLEDENCODER(Gi)
14: G′

i = GRAPHAUGMENTATION(Gi)
15: z′i = DISENTANGLEDENCODER(G′

i)
16: Calculate pθ(k|Gi) by Eq. (4)
17: end for
18: for k ← 1 to K do ▷ factor-wise contrastive learning
19: for i← 1 to |B| and j ← 1 to |B| do
20: s

(k)
i,j = ϕ(zi,k, z

′
j,k) ▷ similarity of kth factor

21: end for
22: Calculate p̂θ(yi|Gi, k) by Eq. (8)
23: end for
24: for Gi ∈ B do ▷ optimization objective
25: Calculate qθ(k|Gi, yi) by Eq. (9)
26: Calculate ELBO L(θ, i)
27: end for
28: Calculate ELBO over a minibatch L(θ,B) by Eq. (15)

and the independence regularizer Lreg by Eq. (16)
29: Update θ to minimize −L(θ,B) + λLreg by Eq. (14)
30: end for
31: Z = {zi}Ni=1, zi = DISENTANGLEDENCODER(Gi), Gi ∈

G

3.6.2 Number of Parameters Analysis
For our proposed IDGCL, the number of parameters is
O(Ld2), where L is the number of message-passing layers
of disentangled graph encoder, and d is the dimensionality
of the representation. Specifically, because we adopt GIN as
the message passing layers, the number of parameters of
the disentangled graph encoder is O(Ld2). The number of
parameters of K latent factor prototypes is O(K ∗ (d/K)) =
O(d). The independence regularization does not involve
extra learnable parameter. For the baselines that use GNNs
(e.g., GCN or GIN) as the graph encoder, including GVAE,
InfoGraph, GCC, MVGRL, and GraphCL, the number of
parameters is O(Ld2). Therefore, the number of parameters
of the proposed method and the baselines are comparable.

4 EXPERIMENTS

In this section, to demonstrate the effectiveness of our
proposed IDGCL model, we empirically compare IDGCL
with state-of-the-art (SOTA) methods for graph classification
tasks. Concretely, in Section 4.1, we report the results of
unsupervised learning settings. In Section 4.2, we conduct
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TABLE 1: The statistics of the datasets used in the unsupervised learning setting. #Graphs is the number of graphs in the
dataset. Avg #nodes/#edges are the average number of nodes and edges in a graph of the dataset, respectively.

MUTAG PTC-MR PROTEINS NCI1 IMDB-B IMDB-M RDT-B RDT-M5K COLLAB

#Graphs 188 344 1,113 4,110 1,000 1,500 2,000 4,999 5,000
#Classes 2 2 2 2 2 3 2 5 3

Avg #nodes 17.9 14.3 39.1 29.9 19.8 13.0 429.6 508.5 74.5
Avg #edges 19.8 14.7 72.8 32.3 96.5 65.9 497.8 594.9 2457.8

TABLE 2: Graph classification accuracy (%) of our proposed method and baselines in the unsupervised learning setting. In
each column, the boldfaced score denotes the best result of all the methods and the underlined score represents the best
result of baselines. “–” indicates the result is not reported in the paper.

MUTAG PTC-MR PROTEINS NCI1 IMDB-B IMDB-M RDT-B RDT-M5K COLLAB

SP 85.2±2.4 58.2±2.4 75.1±0.5 73.0±0.2 55.6±0.2 38.0±0.3 64.1±0.1 39.6±0.2 –
GK 81.7±2.1 57.3±1.4 71.7±0.6 62.3±0.3 65.9±1.0 43.9±0.4 77.3±0.2 41.0±0.2 72.8±0.3
WL 80.7±3.0 58.0±0.5 72.9±0.6 80.0±0.5 72.3±3.4 47.0±0.5 68.8±0.4 46.1±0.2 –

DGK 87.4±2.7 60.1±2.6 73.3±0.8 80.3±0.5 67.0±0.6 44.6±0.5 78.0±0.4 41.3±0.2 73.1±0.3
MLG 87.9±1.6 63.3±1.5 76.1±2.0 80.8±1.3 66.6±0.3 41.2±0.0 – – –

node2vec 72.6±10.2 58.6±8.0 57.5±3.6 54.9±1.6 – – – – –
sub2vec 61.1±15.8 60.0±6.4 53.0±5.6 52.8±1.5 55.3±1.5 36.7±0.8 71.5±0.4 36.7±0.4 –

graph2vec 83.2±9.3 60.2±6.9 73.3±2.1 73.2±1.8 71.1±0.5 50.4±0.9 75.8±1.0 47.9±0.3 –
GVAE 87.7±0.7 61.2±1.8 – – 70.7±0.7 49.3±0.4 87.1±0.1 52.8±0.2 –

InfoGraph 89.0±1.1 61.7±1.4 74.4±0.3 76.2±1.1 73.0±0.9 49.7±0.5 82.5±1.4 53.5±1.0 70.7±1.1
GCC – – – – 72.0 49.4 89.8 53.7 78.9

MVGRL 89.7±1.1 62.5±1.7 – – 74.2±0.7 51.2±0.5 84.5±0.6 – –
GraphCL 86.8±1.3 63.6±1.8 74.4±0.5 77.9±0.4 71.1±0.4 50.7±0.4 89.5±0.8 56.0±0.3 71.4±1.2

JOAO 87.7±0.8 61.1±1.7 74.1±1.1 78.4±0.5 70.8±0.3 51.0±0.5 86.4±1.5 56.0±0.3 69.3±0.3

DGCL 92.1±0.8 65.8±1.5 76.4±0.5 81.9±0.2 75.9±0.7 51.9±0.4 91.8±0.2 56.1±0.2 81.2±0.3
IDGCL 92.5±0.6 66.2±1.3 77.1±0.2 82.4±0.3 76.1±0.2 52.3±0.4 91.9±0.3 56.3±0.2 81.3±0.3

experiments on semi-supervised settings. Finally, we report
several analyses including ablation studies in Section 4.3.

4.1 Unsupervised Learning

We first evaluate our model in the unsupervised representa-
tion learning following the common evaluation protocols in
the existing literature [5, 11, 34, 35], where graph represen-
tations are trained in an unsupervised setting and then fed
into a downstream SVM classifier.

4.1.1 Experimental Setup

To demonstrate the advantages of our method, we conduct
experiments on nine well-known graph classification datasets
including five bioinformatics datasets, i.e., MUTAG, PTC-
MR, PROTEINS, NCI1 and four social network datasets, i.e.,
IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-
MULTI-5K, and COLLAB. The statistics of the datasets are
summarized in Table 1.

We compare our proposed method with the following two
groups of baselines. One group of baselines are graph kernels
including Shortest Path Kernel (SP) [36], Graphlet Kernel
(GK) [37], Weisfeiler-Lehman Sub-tree Kernel (WL) [38],
Deep Graph Kernels (DGK) [35], and Multi-Scale Laplacian
Kernel (MLG) [39]. The other group of baselines are classical
unsupervised graph representation learning methods includ-
ing node2vec [40], sub2vec [41], graph2vec [34], GVAE [42],
and more recent contrastive graph representation learning
methods including InfoGraph [5], GCC [10], MVGRL [9],
GraphCL [11], JOAO [43]. For our proposed method, we
consider two versions: the full IDGCL model and DGCL, a
variant of our model when λ = 0 [17].

We implement our models in PyTorch and use Stochastic
Gradient Descent (SGD) for the optimization. We use GIN [4]
as the message-passing layers since it is shown to be one of
the most expressive message-passing GNNs. The number
of message-passing layers is chosen from {2, 3, 4, 5}. The
dimensionality of the representations d is chosen from
{64, 128, 256, 512}. Note that the ground-truth number of
the latent factors is unknown, so we search the number
of channels K from 1 to 10. For our IDGCL, the hyper-
parameter λ controlling the impact of the HSIC regularizer is
chosen from {0.0001, 0.001, 0.01, 0.1}. For a fair comparison,
the hyper-parameters of the graph augmentations are kept
consistent with GraphCL [11]. For the unsupervised setting,
we use SVM as the downstream classifier. We adopt the 10-
fold cross validation accuracy, and report the mean accuracy
(%) with standard variation after five repeated runs.

4.1.2 Results on Real Benchmark Graphs

The results are reported in Table 2. We can see that the
graph contrastive learning methods generally outperform the
graph kernel methods or the classical unsupervised methods,
which verify the effectiveness of contrastive learning. Our
disentangled method IDGCL consistently achieves the best
performances compared with other contrastive baselines (e.g.,
MVGRL, GrpahCL) and classical unsupervised baselines
(e.g., graph2vec, GVAE), demonstrating the superiority of
disentanglement. For example, IDGCL increases the clas-
sification accuracy by 2.6% and 1.6% against the strongest
baselines on PTC-MR and NCI1 respectively. And IDGCL
improves upon DGCL by a margin of 0.4% and 0.5% on PTC-
MR and NCI1, suggesting that encouraging independence
between latent factors is beneficial to learn informative graph



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

(a) MVGRL (b) GraphCL (c) DGCL (d) IDGCL

Fig. 2: An analysis of feature correlation on the synthetic graphs with eight latent factors. The figures show the absolute
value of the correlations between the elements of the representations learned by MVGRL, GraphCL, DGCL, and IDGCL
with eight channels, respectively. We can see that the representations generated from IDGCL present a more block-wise
correlation pattern, indicating that the eight channels of the disentangled graph encoder in IDGCL are able to capture
mutually exclusive information and the latent features have indeed been disentangled.

representations. We attribute the results to the fact that these
existing methods fail to identify the underlying latent factors,
which are important in preserving graph properties, and
therefore cannot learn the disentangled representations. In
contrast, we disentangle graph representations to explicitly
consider the entanglement of heterogeneous factors. When
compared to graph kernel methods, our method also has the
best accuracy on all the datasets. Notice that none of these
kernel methods is consistently competitive across all of the
datasets, as opposed to our method.

4.1.3 Results on Synthetic Graphs

Since the formation processes of real-world graphs are
usually unobserved to us, it is difficult to obtain the semantic
information of latent factors, which is the common case
in the graph disentanglement literature [12, 19]. To further
investigate the behavior of our method, we generate a
synthetic dataset consisting of 1,000 graphs with known
latent factors. Specifically, we generate synthetic graphs
using the stochastic block model [44]. Each graph contains
four communities and each community consists of 10 nodes.
We define the latent factor as the probability p that two
nodes are connected in a community. p can take value from
{0.2, 0.3, . . . , 0.9}, meaning that there are eight latent factors
in the dataset in total. The probability for each community is
drawn from the eight possible choices without replacement.
Two nodes in different communities are connected with
probability 0.05. The rows of the adjacency matrices are used
as node features, and the ground-truth communities are used
as labels, i.e., there are 8 classes and each graph has 4 labels.
We train IDGCL, DGCL and two baselines, i.e., MVGRL
and GraphCL on the synthetic dataset with self-supervision.
Then we adopt the SVM classifier on the learned graph
representations and use the Micro-F1 (%) as the evaluation
metric.

We vary the number of channels K of our method
and report the results in Figure 3. Our methods IDGCL
and DGCL report better performance than the baselines.
We also find that as K increases from 1 to 8, the result
of our methods improves, which verifies the importance
of disentangling latent factors. After reaching the peak at
K = 8, the performance slightly drops, but in general, our
method is not very sensitive when K is not too large. When

1 2 3 4 5 6 7 8 9 10
Number of Channels K

58

60

62

64

M
icr

o-
F1

 (%
)

Synthetic Dataset

IDGCL
DGCL
GraphCL
MVGRL

Fig. 3: Micro-F1 (%) of our proposed method and two
baselines with different number of channels K .

K is equal to the ground-truth number of latent factors,
our methods achieve the best results and IDGCL further
improves on DGCL, indicating that our method can capture
the underlying structure of this simulation dataset with the
disentangled representations.

Besides the quantitative evaluation, we also provide a
qualitative evaluation by plotting the correlation of the latent
features in Figure 2. The figure shows the absolute values
of the correlation between the elements of 128-dimensional
graph representation obtained from MVGRL, GraphCL, our
DGCL and IDGCL (K = 8) on the synthetic dataset. We
can see from the results that the graph representations of
MVGRL and GraphCL are entangled. In comparison, the
correlation of IDGCL shows eight diagonal blocks, meaning
that the channels of IDGCL likely extract mutually exclusive
information and output disentangled representations. From
Figure 2 (c)(d), we can observe that IDGCL can further
reduce the correlation of different blocks compared to DGCL.
The results indicate that optimizing our statistical indepen-
dence metric can further promote the output representations
of different factors to be sufficiently independent for disen-
tanglement. To better show the effectiveness of the proposed
method, we further consider the following evaluation way.
Specifically, we first cluster the 128 dimensions by the k-
means algorithm [45] (with 8 clusters) using the 128 row
vectors of the feature correlation matrix, so that the cluster
id of each dimension could indicate the block id. Then, we
calculate the ratio of the average feature correlation inside
the block structure divided by the average feature correlation
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TABLE 3: The statistics of the OGB datasets in the semi-supervised setting. The datasets contain multiple binary classification
tasks and #Tasks denotes the number of tasks (i.e., the dimensionality of output).

BACE BBBP TOX21 CLINTOX SIDER TOXCAST MUV HIV

#Graphs 1,513 2,039 7,831 1,477 1,427 8,576 93,087 41,127
#Tasks 1 1 12 2 27 12 17 1

Avg #nodes 34.1 24.1 18.6 26.2 33.6 18.8 24.2 25.5
Avg #edges 36.9 26.0 19.3 27.9 35.4 19.3 26.3 27.5

Metric ROC-AUC ROC-AUC ROC-AUC ROC-AUC ROC-AUC ROC-AUC AP ROC-AUC

outside the block structure. Intuitively, a larger ratio denotes
better disentanglement quantitatively. Finally, the ratio is
2.20, 2.45, 2.87, and 22.49 for MVGRL, GraphCL, DGCL,
and IDGCL, respectively. The results further demonstrate
that the proposed IDGCL can output disentangled graph
representations compared with other methods.

To further explore the properties of the disentangled
graph representations, we plot the graph distribution based
on representations extracted from different channels with
t-SNE [46] in Figure 4. For simplicity, we only take two
latent factors and two channels as the example, while the
others show similar patterns. Specifically, we plot the graph
distribution on a 2D plane based on the graphs with (denoted
by cyan points) and without (denoted by red points) the
factor p = 0.2 or p = 0.9 by the representations extracted
from the channel that is the only one among all channels
whose output representations are discriminative to the factor,
i.e., the 1st channel for factor p = 0.2 and the 5th channel
for factor p = 0.9 in our experiments. Figure 4 shows
that different channels capture different latent factors of
the graphs. In Figure 4 (a)(b), we can observe whether
the latent factor p = 0.2 is included in the graph can be
discriminated obviously with the representations extracted
only from the 1st channel (as shown in (a)), while they are
mixed with representations from the 5th channel (as shown
in (b)). However, whether the latent factor p = 0.9 is included
in the graph can be discriminated with the representations
extracted only from the 5th channel while they are hard to be
separated with representations from the 1st channel, which is
the opposite to the case of the latent factor p = 0.2. Therefore,
although it is difficult to figure out the specific meaning
that each channel represents without enough supervision,
learning disentangled graph representations by our method
makes it possible to explore the meaning of each channel.

4.2 Semi-supervised Learning

4.2.1 Experimental Setup
Furthermore, we evaluate our proposed method in the semi-
supervised learning. We first perform pre-training with all
training data without labels. Then we conduct fine-tuning
on the partially labeled training data and evaluation on the
validation/test sets.

We consider 8 graph property prediction datasets from
OGBG-MOL∗ in Open Graph Benchmark (OGB) [47], i.e.,
BACE, BBBP, TOX21, CLINTOX, SIDER, TOXCAST, MUV,
and HIV. The task is to predict the target molecular properties
as accurately as possible. We adopt the evaluator and dataset
splits provided by OGB for a fair comparison.

We compare our proposed method with the following
baselines. The naive baseline is training from scratch without

(a) factor p = 0.2, 1st channel. (b) factor p = 0.2, 5th channel.

(c) factor p = 0.9, 1st channel. (d) factor p = 0.9, 5th channel.

Fig. 4: Visualization of the learned representations from two
channels (i.e., the 1st channel and 5th channel) in terms of
the two latent factors (i.e., factor p = 0.2 and factor p = 0.9).
We can observe that different channels of the disentangled
graph encoder capture different latent factors of the graphs.

the pre-training stage, which we denote as “No pre-train”.
Besides, we consider three self-supervised methods: edge-
based reconstruction method EdgePred, vertex feature mask-
ing & recovering method AttrMasking, and sub-structure
information preserving method ContextPred [48]. They are
designed based on certain domain knowledge, which work
well when such knowledge is available and benefits down-
stream tasks [43, 48]. We also consider two representative
self-supervised baselines InfoGraph [5] and GraphCL [11].

For our proposed method and baselines, we first perform
pre-training and then conduct fine-tuning with 1%, 5%, 10%,
or 20% labeled training data. The number of message-passing
layers is set to 5 and the dimensionality of the representations
is set to 300, following [47]. Others hyper-parameters are kept
consistent with those in the unsupervised learning setting.

4.2.2 Results
The results are shown in Figure 5. We can find that IDGCL
outperforms the baselines in most comparisons, which
verifies that learning disentangled graph representation
with independence promotion can benefit encoding useful
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Fig. 5: Graph classification results of our proposed method and baselines in the semi-supervised learning setting.

information of graphs into representations. For example,
IDGCL increases the AUC score by 7.8% against the strongest
baseline (i.e., AttrMasking) on OGBG-MOLBACE (10% label
rate). We also observe that IDGCL improves upon DGCL
by a margin of 3.5% on the same dataset. Besides, the
improvement of IDGCL compared with DGCL is 5.1%,
14.3%, and 2.8% on BACE, CLINTOX, and SIDER, respec-
tively, when the label rate is 5%. The results on OGBG-
MOLMUV and OGBG-MOLHIV illustrate that our method
is also able to handle large-scale graphs, demonstrating the
benefit of learning disentangled graph representations in the
contrastive manner.

4.3 Analysis

4.3.1 Ablation Studies
We perform ablation studies over the key components of our
method to understand their functionalities more deeply. We
compare IDGCL with the following three variants: (1) DGCL,
i.e., setting λ = 0. (2) Variant 1: it sets pθ(k|Gi) = 1/K, i.e.
a uniform distribution of latent factors. (3) Variant 2: it sets
K = 1 directly, so that our method will degenerate to the
entangled graph contrastive learning model. For simplicity,
we only report the results on the datasets in the unsupervised
setting, while the results in the semi-supervised setting show
similar patterns.

The results of IDGCL, DGCL and the variants are shown
in Table 4. We can find that when setting λ to 0, the perfor-
mance is consistently degraded on all datasets, i.e., IDGCL
consistently outperforms DGCL. It means that although
DGCL considered disentanglement of different latent factors
implicitly by conducting factor-wise contrastive learning,
it neglects to explicitly encourage the independence of the
latent factors, which could lead to suboptimal performance
for disentanglement. In contrast, IDGCL, adopting the HSIC
to regularize the latent representations, can enforce them to
be independent to produce more informative representations
than DGCL, which is validated by the results in both
unsupervised and semi-supervised settings. Besides, from
Table 4, we observe a drop in performance of Variant 1,

demonstrating the efficacy of inferring the latent factors of
the graphs. In variant 2, the latent factors are entangled in the
graph representation, making difficulties for characterizing
different aspects of the graphs and conducting discrimination
tasks in terms of each latent factor independently. The
deterioration of performance verifies the significance of the
proposed factor-wise contrastive learning.

4.3.2 Hyper-parameter Sensitivity
We investigate the sensitivity of hyper-parameters of our
method: the number of channels K , the number of message-
passing layers L, the dimensionality of the representation d,
the batch size B, and the regularization coefficient λ. Among
them, the number of channels K is the most important
hyper-parameter. For simplicity, we only report the results
on the MUTAG (Figure 6), IMDB-B (Figure 7) datasets for
the unsupervised learning setting and the results on OGBG-
MOLBACE (20% label rate, Figure 8) for the semi-supervised
learning setting, while the results on other datasets show
similar patterns. From Figures 6, 7, and 8, we can observe
the following results. The performance increases at first
with a larger K and drops after reaching a peak, showing
that a proper number of channels K which matches the
real latent factors behind the observed data can lead to
better results. Then, the number of message-passing layers
L is also important because our model with a small L
has a limited model capacity and may not be able to fuse
enough information from neighbors, and a very large L
could also lead to the over-smoothing problem [49]. In
addition, the optimal dimensionality of representation d
for MUTAG is relatively smaller than that for IMDB-B and
OGBG-MOLBACE, since MUTAG only consists of 188 graphs
but IMDB-B and OGBG-MOLBACE contain 1,000 and 1,513
graphs with more nodes and edges, respectively. A too large
d may induce over-fitting and hurt the performance. Our
method benefits from larger batch sizes, which is consistent
with the literature on contrastive learning [25]. Finally, λ
also influences the performance. A large λ overemphasizes
the independence between latent factors and a too small λ
limits the impact of the independence regularization. We
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TABLE 4: Ablation studies on variants of our method. We report the accuracy (%) with standard variation on the datasets.
The performance of Variant 1 and 2 are greatly degraded compared with IDGCL, demonstrating the significance to infer
latent factors behind the graphs and conduct factor-wise contrastive learning.

MUTAG PTC-MR PROTEINS NCI1 IMDB-B IMDB-M RDT-B RDT-M5K COLLAB

IDGCL 92.5±0.6 66.2±1.3 77.1±0.2 82.4±0.3 76.1±0.2 52.3±0.4 91.9±0.3 56.3±0.2 81.3±0.3
DGCL 92.1±0.8 65.8±1.5 76.4±0.5 81.9±0.2 75.9±0.7 51.9±0.4 91.8±0.2 56.1±0.2 81.2±0.3

Variant 1 89.3±0.3 64.3±1.3 74.9±0.2 78.5±0.5 73.4±0.5 50.3±0.2 91.1±0.7 55.9±0.3 77.5±0.4
Variant 2 86.5±0.6 63.5±1.6 73.9±0.6 77.7±0.6 70.9±0.5 49.8±0.3 89.7±0.6 55.7±0.2 71.5±0.2
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Fig. 6: Impact of different hyper-parameters on the MUTAG dataset.
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Fig. 7: Impact of different hyper-parameters on the IMDB-B dataset.
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Fig. 8: Impact of different hyper-parameters on the OGBG-MOLBACE dataset.

empirically find that setting λ to 10−3 achieves satisfactory
results for most datasets.

5 RELATED WORK

Graph Neural Networks. Graph structured data is ubiqui-
tous in the real world [47, 50, 51]. Recently, graph neural
networks (GNNs) [2–4] have revolutionized the field of
graph representation learning [52]. GNNs show promising
performance on various tasks, including node classifica-
tion [2], link prediction [53], and graph classification [4]), and
demonstrate profound successes in challenging applications,
such as drug discovery [54], protein function prediction [55],
traffic forecasting [56], etc. GNNs generally adopt a neigh-
borhood aggregation (message passing) paradigm, i.e., the
representation of node is iteratively updated by aggregating
representations of its neighbors [3, 4]. The representation
of the whole graph is summarized on node representation
through the readout function, e.g., graph pooling [4]. How-
ever, in order to achieve state-of-the-art performance, most
famous GNNs [57–62], are trained end-to-end with task-
specific labels, which could be extremely scarce for some
graph datasets. Compared with these supervised models,
our proposed model is based on self-supervised contrastive
learning and can largely reduce the over-dependence on

the manual labels, which is crucial for graph representation
learning.

Contrastive Learning on Graphs. Recently, contrastive
learning, adopting the instance discrimination as the pretext
task, has become a dominant component in self-supervised
learning methods [22, 23, 25, 27, 30]. Some literatures utiliz-
ing contrastive learning for graph data are proposed [5, 7, 9–
11, 63]. The key of these methods is to maximize the
agreement (i.e., similarity) between proper transformations
or different views of the input graph. However, the existing
graph contrastive learning methods explore general settings
where entanglement is severe and do not incorporate disen-
tangled representation learning. They fail to recognize and
disentangle the heterogeneous latent factors behind complex
graph data. These holistic methods have limited capacity in
preserving detailed graph properties, which easily results in
suboptimal representations for downstream tasks.

Disentangled Representation Learning. Disentangled
representation learning is to learn factorized representations
that identify and disentangle the underlying explanatory fac-
tors hidden in the observed data [14]. The existing efforts for
disentangled representation learning are mainly on computer
vision [64, 65]. Graph disentangled representation learning
has raised a surge of interests recently [12, 19, 33, 66–68]. This
line of works attempts to learn disentangled representations
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for graphs but heavily relies on the annotated labels, which
largely restricts their applications to scenarios where labeled
data are unavailable or expensive to collect. On the other
hand, some works [42, 69] are based on the generative model,
namely utilizing Variational Autoencoders (VAEs) on graph
for disentanglement, since the hyper-parameter β of VAEs
can balance the reconstruction and disentanglement [18, 70].
However, the reconstruction in generative methods could
be computationally expensive [21, 71] and even introduce
bias that has a negative effect on the learned representation
[27]. In addition, the reconstruction for graph-structured
data often involves discrete decisions that are not differ-
entiable [69]. How to learn disentangled representation on
graph-structured data with contrastive learning is largely
unexplored.

Orthogonal Regularization. Several works find that
imposing orthogonal regularization on the weighting pa-
rameters can improve neural network training for more
efficient optimization or better training stability [72–74].
More recently, orthogonal regularization is also utilized to
constrain the latent space for learning disentangled represen-
tation in computer vision [75–77]. For example, PrOSe [75]
proposes to parameterize the latent space representation
as a product of orthogonal spheres. OroJaR [76] introduces
orthogonal regularization in deep generative models. How-
ever, the orthogonal regularizations can only encourage
linear independence while the HSIC regularization can
encourage complex nonlinear dependence among the graph
representations.

6 CONCLUSIONS

In this paper, we propose the independence promoted disen-
tangled graph contrastive learning model (IDGCL) to solve
the problem of learning disentangled self-supervised graph
representation. We design a disentangled graph encoder
with a tailored multi-channel message-passing layer, which is
capable of aggregating features in a disentangled manner. We
further propose a factor-wise contrastive learning approach
to solve the instance discrimination task under each latent
factor independently, so that the learned representations of
IDGCL are encouraged to not only best describe the graphs
but also be disentangled. We also present an independence
regularization to eliminate the statistical dependence among
different latent representations. Utilizing these techniques,
each component of the disentangled representations in
IDGCL tends to characterize a disentangled aspect of the
graph that is pertinent to a latent factor. Extensive experi-
ments on both synthetic and real-world datasets demonstrate
the superiority of our method against several state-of-the-
art baselines in unsupervised and semi-supervised graph
classification tasks.
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APPENDIX A
HARDWARE AND SOFTWARE CONFIGURATIONS

All our experiments are conducted with the following
hardware and software configurations:

• Operating System: Ubuntu 18.04.1 LTS
• CPU: Intel(R) Xeon(R) CPU E5-2699 v4@2.20GHz
• GPU: NVIDIA GeForce GTX TITAN X
• Software: Python 3.6.5; NumPy 1.18.0; PyTorch 1.7.0;

PyTorch Geometric 1.6.1 [78].

APPENDIX B
MORE DISCUSSIONS

To make our paper more self-contained, we provide more
discussions by answering the following questions regarding
the independence regularization. The first question is: why
do we need the independence regularization? According to
the graph disentangled representation learning literature,
encouraging the independence among the representations
in terms of different latent factors properly has a positive
influence on the prediction accuracy in supervised [12, 65]
and unsupervised [69] settings. Therefore, we adopt the
additional independence regularization to explicitly enforce
independence between the latent representations so as to
improve the quality of disentangled graph representations
in a self-supervised setting. The effectiveness of our method
for improving the performances is also validated by experi-
ments.

The second question is: why do we encourage indepen-
dence by HSIC that is a pairwise independence regularization
rather than some multi-factor measure? (1) To the best of our
knowledge, HSIC is one of the most popular independence
criteria that are introduced into the training of neural
networks. Therefore, we adopt HSIC as the independence
regularization in the proposed method, since it is effective yet
efficient to estimate the dependence of graph representations
and can avoid to estimate the joint distribution of the random
variables directly as most multi-factor measures. (2) The
number of channels K is not very large on the datasets in
the experiments. We empirically observe that the proposed
method with a small K has outperformed the baselines, so
that it will not lead to the numerical efficiency issues. (3) Since
graph representations are mapped into the RKHS to measure
the dependence, the correlations measured in that space
correspond to high-order joint moments between the original
distributions and more complex nonlinear dependence can
be addressed. (4) Multi-factor independence regularizations
could induce more constraints to the latent factors than
pairwise independence, but could lead to efficiency issues in
the optimization. We also empirically find that encouraging
pairwise independence is good enough for learning disen-
tangled graph representations. Based on the reasons above,
we choose the HSIC as the independence regularization.

The third question is: how does the form of independence
regularization incluence the model performances? Indepen-
dence measurements have been well-established in statistics,
including general correlation coefficients, contingency table-
based methods, characteristic function-based methods, etc.
However, these classical methods either cannot detect all

modes of dependence or are limited to univariate/low-
dimensional random variables [1]. HSIC, as a kernel-based in-
dependence criterion, is proposed to address these problems.
Due to its effective performance yet efficiency in estimating
the dependence, HSIC becomes a popular independence
regularization and has been widely adopted in the training
of neural networks [31, 79]. Therefore, we follow the litera-
ture [31, 79] to use HSIC to encourage independence among
disentangled graph representations.

APPENDIX C
DATASETS

We adopt four bioinformatics datasets in the experiment.
MUTAG dataset contains mutagenic aromatic and heteroaro-
matic nitro compounds. PTC dataset contains chemical
compounds reported for carcinogenicity of rats. PROTEINS is
a dataset where nodes are secondary structure elements, and
there is a connection between two nodes if they are neighbors
in the amino-acid sequence or in 3D space. NCI1 is a subset
of balanced datasets of chemical compounds released by the
National Cancer Institute (NCI).

We also conduct the experiment on five social network
datasets. IMDB contains movies information, in which the
nodes represent actors/actresses and the two nodes have
connections if they have acted in the same movie. IMDB-
BINARY consists of two genres of movies, while IMDB-
MULTI contains movies from Comedy, Romance and Sci-
Fi genres. Reddit datasets were created using threads in
different subreddits, where nodes are users who responded
to that particular thread and edges represent that one user
responds to another user’s comment. REDDIT-BINARY
labels each graph as 2 labels and REDDIT-MULTI-5K labels
graphs into 5 labels. COLLAB dataset is derived from 3
public collaboration datasets, i.e., High Energy Physics,
Condensed Matter Physics and Astro Physics. Each graph
corresponds to an ego-network of different researchers from
each field. The labels denote the fields the corresponding
researchers belong to.

Note that the node features are not provided for the
five social network datasets. Therefore, we follow previous
works [4, 9] to use a constant vector as the node features for
REDDIT-BINARY and a one-hot encoding of node degrees
as node features for the other datasets.

In addition, We consider 8 graph property prediction
datasets from OGBG-MOL∗ in Open Graph Benchmark
(OGB) [47], i.e., BACE, BBBP, TOX21, CLINTOX, SIDER,
TOXCAST, MUV, and HIV. The task is to predict the target
molecular properties as accurately as possible. Each graph in
the datasets represents a molecule, where nodes are atoms,
and edges are chemical bonds. The input features of nodes
are 9-dimensional, containing atomic number and chirality,
as well as other additional atom features such as formal
charge and whether the atom is in the ring or not.

The datasets are publicly available.

• Open Graph Benchmark (OGB): https://ogb.stanford.
edu/docs/graphprop/ with MIT License

• The other nine graph datasets: https://chrsmrrs.github.
io/datasets/docs/datasets/ with license unspecified

https://ogb.stanford.edu/docs/graphprop/
https://ogb.stanford.edu/docs/graphprop/
https://chrsmrrs.github.io/datasets/docs/datasets/
https://chrsmrrs.github.io/datasets/docs/datasets/
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APPENDIX D
GRAPH AUGMENTATION

The data augmentation is critical to contrastive learning
methods. For a fair comparison, we follow the previous
work GraphCL [11] and randomly perform one type of data
augmentations for graphs as follows:

• Node dropping. Given the input graph, it will randomly
discard 20% nodes along with their edges, implying that
the missing nodes do not affect the model predictions
much.

• Edge perturbation. Given the input graph, it will
randomly add or cut a certain portion of connections
between nodes with the probability of 0.2. This augmen-
tation can prompt robustness of the graph encoder to
the edge connectivity pattern variances.

• Attribute masking. It will set the feature of 20% nodes
in the graph to Gaussian noises with mean and standard
deviation is 0.5. The underlying prior is that missing part
of the features do not affect the semantic information of
the whole graph.

• Subgraph sampling. It will sample a subgraph, includ-
ing 20% nodes from the input graph, using random walk.
The assumption is that the semantic information of the
whole graph can be reflected by its partial structure.

Note that we do not generate factor-wise augmented sam-
ples because of the following reasons. First, it is hard to use
these available datasets to generate factor-wise augmented
samples. The latent factors that drive the formation of a graph
are usually complex and unobserved, making it difficult
to design appropriate augmentation strategies in terms of
these latent factors. Besides, for our method, the latent
factors can be learned from the input graphs automatically
without having to be specified manually or predefined. Even
without the factor-wise augmented samples, our method can
achieve the best performance compared with other baselines
under the same augmentation strategies. It demonstrates the
effectiveness of our method. That being said, augmentation
is an important step for contrastive learning, and graph
augmentation with more priori knowledge (e.g., factor-wise
augmentation) could potentially lead to better results for
self-supervised graph representation learning.
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