Intention-aware Sequential Recommendation with Structured Intent Transition **Haoyang Li** Tsinghua University ## Recommender Systems (RS) are Ubiquitous ■ A day in our life with Recommender Systems 马思纯白敬亭致敬新时代守护者 [限长租4200/月] 二环胡同小院复式10。 ## **Problem of Today's RS: User Intentions** - ☐ Can RS understand the <u>user intentions</u> behind the <u>behaviors</u>? - Behaviors are highly driven by user intentions in the real world. ## A Possible Solution: Learn from Sequence ☐ Identifying user intentions exactly from one item is difficult, but may be possible from a sequence of items(behaviors). ## **Problem of Today's RS: User Intentions** - ☐ Can RS model the <u>transition</u> of user intentions explicitly? - ☐ In the real world, user intentions could be dynamic rather than static. - "dynamic": "intent transition" ## **Sequence Modeling** v_{t+1} GRU - □ Sequential Recommendation - □ Order matters in real-world situations. - **□** Sequence Modeling - ☐ Markov Chain: fails on long sequences, data sparsity problem - ☐ Recurrent Neural Network: fails on longer sequences, high cost - **□** Transformer ## **Modeling User Intentions is Challenging** ☐ The existing methods capture behavior patterns. They fail to identify user intentions and model intent transition explicitly. ☐ The properties of user intentions in Recommendation: ## **Problem** - Intention-aware Sequential Recommendation - \Box Goal: for each user, given the sequence of interacted items v_1, \dots, v_t with available description information, predict the v_{t+1} at time index t+1. - ☐ Description information: title, categories, reviews... - We extract keywords from the description information and refer to these extracted keywords as *concepts*. - ☐ User intentions could be reflected in these concepts. - **□** E.g., - □ "Yes, it's <u>perfect</u> for <u>self-defense</u>." → "perfect" "self-defense" - □ "This might be great for my son playing baseball." → "great" "son" "baseball" Making it possible to identify intentions ## **Model Framework** ## **Transformer-based Encoder** #### **□** Embedding Submodule - \square Embedding $(h_i) = \text{item } (v_i) + \text{position } (p_i) + \text{concepts } (c_j)$ - Item Property Order Potential Intents - lacksquare Input hidden representation: $m{H}^0 = [m{h}_1^0, m{h}_2^0, ..., m{h}_T^0]$ $m{h}_i = m{v}_i + m{p}_i + \sum_{e_{i,j}=1} m{c}_j$ #### □ Self-attention Submodule ☐ Capture the dependencies among items within a behavior sequence $$egin{aligned} oldsymbol{S}^l &= \mathrm{SA}(oldsymbol{H}^l) = \mathrm{Attention}(oldsymbol{H}^l oldsymbol{W}_Q^l, oldsymbol{H}^l oldsymbol{W}_K^l, oldsymbol{H}^l oldsymbol{W}_V^l) \ oldsymbol{H}^{l+1} &= \mathrm{FFN}(oldsymbol{S}^l) = \mathrm{ReLU}(oldsymbol{S}^l oldsymbol{W}_1^l + oldsymbol{b}_1^l) oldsymbol{W}_2^l + oldsymbol{b}_2^l \end{aligned}$$ ☐ Goals: Learn users' behavior patterns and filter some noises ## **Intent Extraction** - ☐ In this step, we explicitly extract explainable user intents - from the encoded sequence hidden representations $X = H^L$. - lacksquare Goal: Infer a multi-hot intention vector $m{m}_t = [m_{t,1}, ..., m_{t,K}]$ - \square $m_{t,k} = 1 \Leftrightarrow k^{\text{th}}$ concept belongs to the user intentions at time t - \square A straightforward method: treating m_t as a parameter to be optimized? (\times) - □ over-parameterization; cause efficiency burdens - We adopt a prototype-based method: - lacksquare define K intention prototypes, calculate similarity $s_{t,k} = \frac{m{x}_t \cdot m{c}_k}{\|m{x}_t\|_2 \|m{c}_k\|_2}$ - \square draw m_t from $m_t \sim \text{Categorical}(\text{Softmax}(s_{t,1}, s_{t,2}, ..., s_{t,K}))$ ## **Structured Intent Transition** - ☐ In this step, we model intent transitions with GNN. - lacksquare Learn a personalized intent feature matrix $m{Z}_t = [m{z}_{t,1},...,m{z}_{t,K}] \in \mathbb{R}^{K imes d'}$ - lacksquare From item space to intention space $m{z}_{t,k} = m_{t,k} \mathrm{MLP}_k(m{x}_t)$ - ☐ Model the intent transition on the concept graph A (ConceptNet) - ☐ Pre-defined concepts and their relations can be treated as knowledge; underlying cognitive activity is stored in the connections among concepts. - lacksquare We adopt the message-passing framework $m{Z}_{t+1} = \mathcal{F}(m{Z}_t, m{A})$ Item space Structured intent space ## **Intent Decoder** \square After obtaining the future intent features Z_{t+1} and intent vector m_{t+1} , the intent decoder is defined as: $$\boldsymbol{x}_{t+1} = \sum_{k=1}^{K} m_{t+1,k} \mathrm{MLP}'_k(\boldsymbol{z}_{t+1,k})$$ \square Recommendation probability of item v_{t+1} : $$p(v_{t+1}|[v_1, v_2, ..., v_t]) = \operatorname{Softmax}(\boldsymbol{x}_{t+1}\boldsymbol{V}^T)$$ lacksquare Objective Function $\mathcal{L}_u = \frac{1}{|\mathcal{S}^{(u)}|} \sum_{v_{t+1} \in \mathcal{S}^{(u)}} -\log p(v_{t+1}|[v_1, v_2, ..., v_t])$ ## **Experiments** - ☐ We aim to answer the following three questions: - □ Q1: How does our method perform compared with other state-of-the-art sequential recommendation methods? - □ Q2: Can our method identify explainable user intents and model the structured intent transition accurately? - □ Q3: Is the intent extraction and structured intent transition module helpful in our method? ## **Experimental Settings** #### □ Datasets - ☐ Amazon: contains a large number of product reviews from Amazon.com - ☐ We choose the "Beauty" category dataset. - ☐ Steam: a popular online video game platform - ☐ Epinions: a popular online consumer review website *Epinions.com* - ☐ MovieLens: a dataset about movie rating, including ML-1m an ML-20m ## **Experimental Settings** #### □ Datasets preprocessing procedures - convert all reviews/ratings to implicit feedback of 1 - ☐ remove users and items if they have fewer than 5 records 4.79% 0.54% - □ build the interaction sequence sorted by the timestamps for each user - ☐ obtain concepts of items from the available meta-data - □ e.g., items' descriptions, reviews, etc. 163.5 144.4 TABLE 3: Statistics of the datasets. ML-1m ML-20m 6.040 138,493 3,416 26,744 #Users #Items #Interactions Avg.length Dataset Density 40,226 54.542 0.35m8.8 0.02% **Beauty** 13,044 3.5m Steam 281,428 12.4 0.10% **Epinions** 5,015 8,335 26.9k 5.37 0.06% 1.0m 20m TABLE 4: Statistics of preprocessed concepts of the datasets. | Dataset | #Concepts | #Edges | Avg.concepts/item | |-----------------|-----------|--------|-------------------| | Beauty | 592 | 2,791 | 4.45 | | Steam | 229 | 472 | 4.49 | | Epinions | 114 | 467 | 5.50 | | ML-1m | 96 | 327 | 1.94 | | ML-20m | 316 | 842 | 4.21 | ## **Experimental Settings** #### □ Evaluation metrics - ☐ Hit Rate (HR) $HR@k = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \delta(|\mathcal{T}_u \cap \mathcal{R}_{u,k}| > 0)$ - Normalized Discounted Cumulative Gain (NDCG) NDCG@ $$k = \frac{1}{Z}$$ DCG@ k $$= \frac{1}{Z} \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \sum_{i=1}^{k} \frac{\delta(r_{u,i} \in \mathcal{T}_u)}{\log_2(i+1)}$$ ■ Mean Reciprocal Rank (MRR) $$MRR = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{rank_u}$$ ## **Baselines** - Non-sequential methods - □ PopRec, BPR-MF, NCF - □ Sequential methods - ☐ Markov chain based methods: **FPMC**, **Caser** - ☐ RNN based methods: **GRU4Rec**, **GRU4Rec**+ - ☐ Transformer based methods: SASRec, BERT4Rec ## **Experimental Results** #### ■ Recommendation Accuracy | | | | | | | | | | | _ | | | | |----------|---|--|--|--|--|--|--|--|--|--|---|--|--| | Datasets | Metric | PopRec | BPR-MF | NCF | FPMC | GRU4Rec | GRU4Rec ⁺ | DGCF | Caser | SASRec | BERT4Rec | ISRec | Improv. | | Beauty | HR@1
HR@5
HR@10
NDCG@5
NDCG@10
MRR | 0.0077
0.0392
0.0762
0.0230
0.0349
0.0437 | 0.0415
0.1209
0.1992
0.0814
0.1064
0.1006 | 0.0407
0.1305
0.2142
0.0855
0.1124
0.1043 | 0.0435
0.1387
0.2401
0.0902
0.1211
0.1056 | 0.0402
0.1315
0.2343
0.0812
0.1074
0.1023 | 0.0551
0.1781
0.2654
0.1172
0.1453
0.1299 | 0.0626
0.1835
0.2778
0.1241
0.1543
0.1381 | 0.0475
0.1625
0.2590
0.1050
0.1360
0.1205 | 0.0906
0.1934
0.2653
0.1436
0.1633
0.1536 | 0.0953
0.2207
0.3025
0.1599
0.1862
0.1701 | 0.1233
0.2734
0.3594
0.2020
0.2296
0.2081 | 29.38%
23.88%
18.81%
26.33%
23.31%
22.34% | | Steam | HR@1
HR@5
HR@10
NDCG@5
NDCG@10
MRR | 0.0159
0.0805
0.1389
0.0477
0.0665
0.0669 | 0.0314
0.1177
0.1993
0.0744
0.1005
0.0942 | 0.0246
0.1203
0.2169
0.0717
0.1026
0.0932 | 0.0358
0.1517
0.2551
0.0945
0.1283
0.1139 | 0.0574
0.2171
0.3313
0.1370
0.1802
0.1420 | 0.0812
0.2391
0.3594
0.1613
0.2053
0.1757 | 0.0564
0.1825
0.2934
0.1392
0.1717
0.1400 | 0.0495
0.1766
0.2870
0.1131
0.1484
0.1305 | 0.0885
0.2559
0.3783
0.1727
0.2147
0.1874 | $\begin{array}{c} 0.0957 \\ \hline 0.2710 \\ \hline 0.4013 \\ \hline 0.1842 \\ \hline 0.2261 \\ \hline 0.1949 \\ \end{array}$ | 0.1450
0.3622
0.5072
0.2570
0.3036
0.2612 | 51.52%
33.65%
26.39%
39.52%
34.28%
34.02% | | Epinions | HR@1
HR@5
HR@10
NDCG@5
NDCG@10
MRR | 0.0075
0.0339
0.0831
0.0206
0.0358
0.0430 | 0.0151
0.0472
0.1005
0.0316
0.0464
0.0540 | 0.0155
0.0538
0.0975
0.0338
0.0474
0.0543 | 0.0162
0.0578
0.1083
0.0373
0.0512
0.0546 | 0.0169
0.0629
0.1280
0.0431
0.0565
0.0681 | 0.0176
0.0737
0.1380
0.0456
0.0657
0.0700 | 0.0188
0.0736
0.1353
0.0491
0.0656
0.0693 | 0.0164
0.0733
0.1351
0.0444
0.0642
0.0668 | 0.0217
0.0822
0.1358
0.0530
0.0701
0.0699 | $\begin{array}{c} 0.0220 \\ \hline 0.0866 \\ \hline 0.1462 \\ \hline 0.0534 \\ \hline 0.0724 \\ \hline 0.0705 \\ \end{array}$ | 0.0282
0.1129
0.1949
0.0699
0.0962
0.0885 | 28.18%
30.37%
33.31%
30.90%
32.87%
25.53% | | ML-1m | HR@1
HR@5
HR@10
NDCG@5
NDCG@10
MRR | 0.0141
0.0715
0.1358
0.0416
0.0621
0.0627 | 0.0914
0.2866
0.4301
0.1903
0.2365
0.2009 | 0.0397
0.1932
0.3477
0.1146
0.1640
0.1358 | 0.1386
0.4297
0.5946
0.2885
0.3439
0.2891 | 0.1583
0.4673
0.6207
0.3196
0.3627
0.3041 | 0.2092
0.5103
0.6351
0.3705
0.4064
0.3462 | 0.1770
0.4485
0.6032
0.3162
0.3660
0.3105 | 0.2194
0.5353
0.6692
0.3832
0.4268
0.3648 | 0.2351
0.5434
0.6629
0.3980
0.4368
0.3790 | $\begin{array}{c} 0.2863 \\ \hline 0.5876 \\ \hline 0.6970 \\ \hline 0.4454 \\ \hline 0.4818 \\ \hline 0.4254 \\ \end{array}$ | 0.3184
0.6262
0.7363
0.4831
0.5189
0.4589 | 11.21%
6.57%
5.64%
8.46%
7.70%
7.87% | | ML-20m | HR@1
HR@5
HR@10
NDCG@5
NDCG@10
MRR | 0.0221
0.0805
0.1378
0.0511
0.0695
0.0709 | 0.0553
0.2128
0.3538
0.1332
0.1786
0.1503 | 0.0231
0.1358
0.2922
0.0771
0.1271
0.1072 | 0.1079
0.3601
0.5201
0.2239
0.2895
0.2273 | 0.1459
0.4657
0.5844
0.3090
0.3637
0.2967 | 0.2021
0.5118
0.6524
0.3630
0.4087
0.3476 | 0.1760
0.4361
0.6252
0.3267
0.3809
0.3278 | 0.1232
0.3804
0.5427
0.2538
0.3062
0.2529 | 0.2544
0.5727
0.7136
0.4208
0.4665
0.4026 | $\begin{array}{c} 0.3440 \\ \hline 0.6323 \\ \hline 0.7473 \\ \hline 0.4967 \\ \hline 0.5340 \\ \hline 0.4785 \\ \end{array}$ | 0.3505
0.6484
0.7689
0.5024
0.5401
0.4841 | 1.89%
2.55%
2.89%
1.15%
1.14%
1.17% | - ☐ Sequential > Non-sequential - ☐ Self-attention can provide large - performance gains. - ☐ Our method outperforms all the baselines. - ☐ The sparser the dataset, the larger - the improvement of our method. ## **Experimental Results** ■ Showcases of Intent Extraction and Structured Intent Transition ## **Experimental Results** ■ Ablation studies and hyperparameters sensitivities TABLE 5: Performance comparison of **ISRec** and variants. | | В | eauty | ML-1m | | | | |--------------------|--------|---------|--------|---------|--|--| | | HR@10 | NĎCG@10 | HR@10 | NDCG@10 | | | | ISRec | 0.3594 | 0.2296 | 0.7363 | 0.5189 | | | | w/o GNN | 0.3311 | 0.2095 | 0.7222 | 0.4978 | | | | w/o GNN&Intent | 0.3092 | 0.1965 | 0.7058 | 0.4731 | | | | BERT4Rec + concept | 0.3037 | 0.1886 | 0.6987 | 0.4824 | | | | SASRec + concept | 0.3061 | 0.1845 | 0.6972 | 0.4643 | | | ## **Conclusions** - We study the intent-aware sequential recommendation with structured intent transition. - ☐ Why can't the current Sequential Recommender Systems make us satisfied enough? 知其 <u>然</u>,而不知其 <u>所以然</u> User Behaviors User Intentions Modeling user intentions with GNN: Try to promote human-like Recommender Systems. ## References - □ W.-C. Kang, et al. "Self-attentive sequential recommendation." ICDM, 2018. - ☐ F. Sun, *et al.* "Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer." CIKM, 2019. - □ J. Tang, et al. "Personalized top-n sequential recommendation via convolutional sequence embedding." WSDM, 2018. - □ R. Speer, *et al.* "Conceptnet 5: A large semantic network for relational knowledge." in The People's Web Meets NLP. Springer, 2013. - X. He, et al. "Neural collaborative filtering." WWW, 2017. - □ S. Wang, et al. "Intention2basket: A neural intention-driven approach for dynamic next-basket planning." IJCAI, 2020. - N. Zhu, et al. "Sequential modeling of hierarchical user intention and preference for nextitem recommendation." WSDM, 2020. - Y. Cen "Controllable Multi-Interest Framework for Recommendation." KDD 2020. ## Intention-aware Sequential Recommendation with Structured Intent Transition Published in: IEEE Transactions on Knowledge and Data Engineering (Early Access) Haoyang Li; Xin Wang; Ziwei Zhang; Jianxin Ma; Peng Cui; Wenwu Zhu. Intention-aware Sequential Recommendation with Structured Intent Transition. *IEEE TKDE*, 2021. ## Thanks! # Haoyang Li, Tsinghua University lihy18@mails.tsinghua.edu.cn