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Recommender Systems (RS) are Ubiquitous

O A day in our life with Recommender Systems
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Human behaviors in recommendation systems are driven by many high-level, complex, and

evolving intentions behind their decision making precesses. In order to achieve better

performance, it is important for recommendation systems to be aware of user intentions

besides considering the historical interaction behaviors. However, user intentions are

seldom fully or easily cbserved in practice, so that the existing works are incapable of fully

tracking and modeling user intentions, not to mention using them effectively into ...
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Problem of Today’s RS: User Intentions

O Can RS understand the user intentions behind the behaviors?
O Behaviors are highly driven by user intentions in the real world.
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A Possible Solution: Learn from Sequence

O Identifying user intentions exactly from one item is difficult,
but may be possible from a sequence of items(behaviors).
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Problem of Today’s RS: User Intentions

O Can RS model the transition of user intentions explicitly?
O In the real world, user intentions could be dynamic rather than static.

O “dynamic” : “intent transition”

health — sports

O health




Sequence Modeling

O Sequential Recommendation
[0 Order matters in real-world situations.

O Sequence Modeling

0 Markov Chain: fails on long sequences, data sparsity problem

O Recurrent Neural Network: fails on longer sequences, high cost

O Transformer

Markov Chain
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Modeling User Intentions is Challenging

O The existing methods capture behavior patterns. They fall to
identify user intentions and model intent transition explicitly.

O The properties of user intentions in Recommendation:

W = &

Unobserved Multiple Correlated Dynamic

1 ! 1 !

auxiliary information identify cognitive relations intent transition



Problem

O Intention-aware Sequential Recommendation
O Goal: for each user, given the sequence of interacted items vy, ..., v; with
available description information, predict the v, at time index t + 1.
O Description information: title, categories, reviews...

O We extract keywords from the description information and refer to these
extracted keywords as concepts.
O User intentions could be reflected in these concepts.

Making it possible to

O E.g., identify intentions

[ “Yes, it's perfect for self-defense.” — “perfect” “self-defense”

O “This might be great for my son playing baseball.” — “great” “son” “baseball”




Model Framework
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Transformer-based Encoder

O Embedding Submodule
O Embedding (h;) = item (v;) + position (p;) + concepts (c;)

ltem Property Potential Intents
O Input hidden representation: H° =[h},h),..,h}] hi=vi+p;+ Y c;
O Self-attention Submodule

O Capture the dependencies among items within a behavior sequence
S' =SA(H') = Attention(HEWé, H'W. H'W})
H'"*!' = FFN(S') = ReLU(S'W/ + b} )W + b,

O Goals: Learn users’ behavior patterns and filter some noises



Intent Extraction

O In this step, we explicitly extract explainable user intents
from the encoded sequence hidden representations X = H™.

O Goal: Infer a multi-hot intention vector m; = [m; 4, ..., m¢ k|
Om =1 k'™ concept belongs to the user intentions at time ¢

O A straightforward method: treating m, as a parameter to be optimized? (X)
O over-parameterization; cause efficiency burdens
0 We adopt a prototype-based method:

It - Ck

EAPY A

O define K intention prototypes, calculate similarity St,x = |
O draw m; from m; ~ Categorical(Softmax(s; 1, 8¢.2, ..., St.x))



Structured Intent Transition

O In this step, we model intent transitions with GNN.
O Learn a personalized intent feature matrix Z; = [2z;.1, ..., z1.x] € REX¢
O From item space to intention space 2z x = m: MLPg(x:)
O Model the intent transition on the concept graph A (ConceptNet)
O Pre-defined concepts and their relations can be treated as knowledge;
underlying cognitive activity Is stored in the connections among concepts.
O We adopt the message-passing framework Z;,, = F(Z;, A)

ltem space Structured intent space



Intent Decoder

O After obtaining the future intent features Z;,, and intent
vector m,, 1, the intent decoder is defined as:

K
/
L] — E mt—l—l,kMLPk(zt-l—l,k:)
k=1

O Recommendation probability of item v, 4:

p(vir1l|[vr, vo, ..., v¢]) = Softmax (a1 VT)

1
D ObJeCt|Ve FunCt|On ﬁu — |S(u)| Z i logp(’Ut_|_1 | [Ula V2, ..vy Ut])
vir1€S(W)



Experiments

O We aim to answer the following three questions:
O Q1: How does our method perform compared with other state-of-
the-art sequential recommendation methods?
O Q2: Can our method identify explainable user intents and model the
structured intent transition accurately?
O Q3: Is the intent extraction and structured intent transition module

helpful in our method?



Experimental Settings

[0 Datasets

OO Amazon: contains a large number of product reviews from Amazon.com
OO We choose the "“Beauty” category dataset.

O Steam: a popular online video game platform

O Epinions: a popular online consumer review website Epinions.com

O MovielLens: a dataset about movie rating, including ML-1m an ML-20m

movielens
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Experimental Settings

O Datasets preprocessing procedures

[ convert all reviews/ratings to implicit feedback of 1
O remove users and items if they have fewer than 5 records
O build the interaction sequence sorted by the timestamps for each user
O obtain concepts of items from the available meta-data
O e.qg., items’ descriptions, reviews, etc.

TABLE 3: Statistics of the datasets. TABLE 4: Statistics of preprocessed concepts of the datasets.
Dataset  #Users #Iltems #Interactions Avglength Density Dataset  #Concepts #Edges Avg.concepts/item
Beauty 40,226 54,542 0.35m 8.8 0.02% Beauty 592 2,791 4.45
Steam 281,428 13,044 3.5m 12.4 0.10% Steam 229 472 4.49
Epinions 5,015 8,335 26.9k 5.37 0.06% Epinions 114 467 5.50
ML-1m 6,040 3,416 1.0m 163.5 4.79% ML-1m 96 327 1.94

ML-20m 138,493 26,744 20m 144.4 0.54% ML-20m 316 842 421




Experimental Settings

O Evaluation metrics

] Hit Rate (HR) HRQL — |1 Z (| 7o N Ruk| > 0)
ueld

O Normalized Discounted Cumulative Gain (NDCG)

NDCGQk = %DCG@I{

B rui € Ty)
Z|U|%Z loga(i+ 1)

O Mean Reciprocal Rank (MRR)

MRR =
|b{| Z ra'n,k




Baselines

O Non-sequential methods
O PopRec, BPR-MF, NCF

O Sequential methods

0 Markov chain based methods: FPMC, Caser
0 RNN based methods: GRU4Rec, GRU4Rec+
O Transformer based methods: SASRec, BERT4Rec



Experimental Results

O Recommendation Accuracy

Datasets  Metric PopRec BPR-MF NCF  FPMC GRU4Rec GRU4Rec™ DGCF Caser SASRec BERT4Rec] ISRec Improv.
HR@1 0.0077  0.0415 0.0407  0.0435  0.0402 0.0551 0.0626  0.0475 0.0906  0.0953 0.1233  29.38%
HR@5 0.0392  0.1209 0.1305 0.1387 0.1315 0.1781 0.1835 0.1625 0.1934  0.2207 0.2734  23.88%
Beauty HR@10 0.0762  0.1992 0.2142 0.2401 0.2343 0.2654 02778 02590 02653  0.3025 0.3594 18.81%
NDCG@5  0.0230  0.0814 0.0855 0.0902 0.0812 0.1172 0.1241  0.1050 0.1436  0.1599 0.2020 26.33%
NDCG@10 0.0349  0.1064 0.1124 01211  0.1074 0.1453 0.1543  0.1360 0.1633  0.1862 0.2296 23.31%
MRR 0.0437  0.1006 0.1043 0.1056  0.1023 0.1299 0.1381 0.1205 0.1536  0.1701 0.2081 22.34%
HR@1 0.0159  0.0314 0.0246  0.0358  0.0574 0.0812 0.0564 0.0495 0.0885  0.0957 0.1450 51.52%
HR@5 0.0805  0.1177 0.1203  0.1517 0.2171 0.2391 0.1825 0.1766 0.2559  0.2710 0.3622  33.65%
Steam HR@10 0.1389  0.1993 0.2169 0.2551 0.3313 0.3594 0.2934 02870 03783  0.4013 0.5072  26.39%
NDCG@5  0.0477  0.0744 0.0717  0.0945  0.1370 0.1613 01392 01131 0.1727  0.1842 0.2570  39.52%
NDCG@10 0.0665  0.1005 0.1026  0.1283  0.1802 0.2053 01717 0.1484 0.2147  0.2261 0.3036 34.28%
MRR 0.0669  0.0942 0.0932 0.1139  0.1420 0.1757 0.1400 0.1305 0.1874  0.1949 0.2612  34.02%
HR@1 0.0075  0.0151 0.0155 0.0162  0.0169 0.0176 0.0188 0.0164 0.0217  0.0220 0.0282 28.18%
HR@5 0.0339  0.0472 0.0538 0.0578  0.0629 0.0737 0.0736  0.0733 0.0822  0.0866 0.1129  30.37%
Epinions HR@10 0.0831  0.1005 0.0975 0.1083  0.1280 0.1380 0.1353 0.1351 0.1358  0.1462 0.1949 3331%
NDCG@5 0.0206  0.0316 0.0338 0.0373  0.0431 0.0456 0.0491 0.0444 0.0530  0.0534 0.0699  30.90%
NDCG@10 0.0358  0.0464 0.0474 0.0512  0.0565 0.0657 0.0656 0.0642 0.0701  0.0724 0.0962 32.87%
MRR 0.0430  0.0540 0.0543 0.0546  0.0681 0.0700 0.0693  0.0668 0.0699  0.0705 0.0885 25.53%
HR@1 0.0141  0.0914 0.0397 0.1386  0.1583 0.2092 01770 02194 0.2351  0.2863 0.3184 11.21%
HR@5 0.0715  0.2866 0.1932 04297 0.4673 0.5103 04485 05353 05434  0.5876 0.6262  6.57%
ML-1m  Re@l0 0.1358  0.4301 0.3477 05946  0.6207 0.6351 0.6032 0.6692 0.6629  0.6970 0.7363  5.64%
NDCG@5 0.0416  0.1903 0.1146  0.2885 0.3196 0.3705 0.3162 03832 03980  0.4454 0.4831 8.46%
NDCG@10 0.0621  0.2365 0.1640 0.3439  0.3627 0.4064 0.3660 0.4268 0.4368  0.4818 0.5189  7.70%
MRR 0.0627  0.2009 0.1358 0.2891  0.3041 0.3462 0.3105 03648 03790  0.4254 0.4589  7.87%
HR@1 0.0221  0.0553 0.0231  0.1079  0.1459 0.2021 0.1760  0.1232  0.2544  0.3440 0.3505 1.89%
HR@5 0.0805  0.2128 0.1358 0.3601  0.4657 0.5118 04361 03804 05727  0.6323 0.6484 2.55%
ML-20m R@I0 0.1378  0.3538 0.2922 05201 0.5844 0.6524 0.6252 05427 0.7136  0.7473 0.7689 2.89%
NDCG@5  0.0511  0.1332 0.0771  0.2239  0.3090 0.3630 0.3267 02538 0.4208  0.4967 0.5024 1.15%
NDCG@10 0.0695  0.1786 0.1271  0.2895  0.3637 0.4087 0.3809 03062 0.4665  0.5340 0.5401 1.14%
MRR 0.0709 0.1503 0.1072 02273  0.2967 0.3476 0.3278 0.2529 0.4026 0.4785 04841 1.17%

O Sequential > Non-sequential

O Self-attention can provide large
performance gains.

O Our method outperforms all the
baselines.

O The sparser the dataset, the larger

the improvement of our method.



Experimental Results

[0 Showcases of Intent Extraction and Structured Intent Transition
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Experimental Results

O Ablation studies and hyperparameters sensitivities

TABLE 5: Performance comparison of ISRec and variants.

Beauty ML-Im
HR@10 NDCG@10 HR@10 NDCG@10
ISRec 0.3594  0.2296 0.7363  0.5189
w/o GNN 0.3311  0.2095 07222  0.4978
w /0o GNN&Intent 0.3092  0.1965 0.7058  0.4731
BERT4Rec + concept  0.3037  0.1886 0.6987  0.4824
SASRec + concept 0.3061  0.1845 0.6972  0.4643
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Conclusions

O We study the intent-aware sequential recommendation with structured

Intent transition.
O Why can’t the current Sequential Recommender Systems make us

satisfied enough?
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Modeling user intentions with GNN:

Try to promote human-like Recommender Systems.
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Abstract:

Human behaviors in recommendation systems are driven by many high-level, complex, and evolving
intentions behind their decision making processes. In order to achieve better performance, it is
important for recommendation systems to be aware of user intentions besides considering the
historical interaction behaviors. However, user intentions are seldom fully or easily observed in
practice, so that the existing works are incapable of fully tracking and modeling user intentions, not
to mention using them effectively into recommendation. In this paper, we present the Intention-
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Specifically, we first extract the intentions of the target user from sequential contexts, then take
complex intent transition into account through the message-passing mechanism on an intention
graph, and finally obtain the future intentions of this target user from inference on the intention
graph. The sequential recommendation for a user will be made based on the predicted user
intentions, offering more transparent and explainable intermediate results for each recommendation.
Extensive experiments on various real-world datasets demonstrate the superiority of our method
against several state-of-the-art baselines in sequential recommendation in terms of different
metrics.
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