

Intention-aware Sequential Recommendation with Structured Intent Transition

Haoyang Li

Tsinghua University

Recommender Systems (RS) are Ubiquitous

■ A day in our life with Recommender Systems

马思纯白敬亭致敬新时代守护者

[限长租4200/月] 二环胡同小院复式10。

Problem of Today's RS: User Intentions

- ☐ Can RS understand the <u>user intentions</u> behind the <u>behaviors</u>?
 - Behaviors are highly driven by user intentions in the real world.

A Possible Solution: Learn from Sequence

☐ Identifying user intentions exactly from one item is difficult, but may be possible from a sequence of items(behaviors).

Problem of Today's RS: User Intentions

- ☐ Can RS model the <u>transition</u> of user intentions explicitly?
 - ☐ In the real world, user intentions could be dynamic rather than static.
 - "dynamic": "intent transition"

Sequence Modeling

 v_{t+1}

GRU

- □ Sequential Recommendation
 - □ Order matters in real-world situations.
 - **□** Sequence Modeling
 - ☐ Markov Chain: fails on long sequences, data sparsity problem
 - ☐ Recurrent Neural Network: fails on longer sequences, high cost
 - **□** Transformer

Modeling User Intentions is Challenging

☐ The existing methods capture behavior patterns. They fail to identify user intentions and model intent transition explicitly.

☐ The properties of user intentions in Recommendation:

Problem

- Intention-aware Sequential Recommendation
 - \Box Goal: for each user, given the sequence of interacted items v_1, \dots, v_t with available description information, predict the v_{t+1} at time index t+1.
 - ☐ Description information: title, categories, reviews...
 - We extract keywords from the description information and refer to these extracted keywords as *concepts*.
 - ☐ User intentions could be reflected in these concepts.
 - **□** E.g.,
 - □ "Yes, it's <u>perfect</u> for <u>self-defense</u>." → "perfect" "self-defense"
 - □ "This might be great for my son playing baseball." → "great" "son" "baseball"

Making it possible to identify intentions

Model Framework

Transformer-based Encoder

□ Embedding Submodule

- \square Embedding $(h_i) = \text{item } (v_i) + \text{position } (p_i) + \text{concepts } (c_j)$
 - Item Property Order Potential Intents
- lacksquare Input hidden representation: $m{H}^0 = [m{h}_1^0, m{h}_2^0, ..., m{h}_T^0]$ $m{h}_i = m{v}_i + m{p}_i + \sum_{e_{i,j}=1} m{c}_j$

□ Self-attention Submodule

☐ Capture the dependencies among items within a behavior sequence

$$egin{aligned} oldsymbol{S}^l &= \mathrm{SA}(oldsymbol{H}^l) = \mathrm{Attention}(oldsymbol{H}^l oldsymbol{W}_Q^l, oldsymbol{H}^l oldsymbol{W}_K^l, oldsymbol{H}^l oldsymbol{W}_V^l) \ oldsymbol{H}^{l+1} &= \mathrm{FFN}(oldsymbol{S}^l) = \mathrm{ReLU}(oldsymbol{S}^l oldsymbol{W}_1^l + oldsymbol{b}_1^l) oldsymbol{W}_2^l + oldsymbol{b}_2^l \end{aligned}$$

☐ Goals: Learn users' behavior patterns and filter some noises

Intent Extraction

- ☐ In this step, we explicitly extract explainable user intents
- from the encoded sequence hidden representations $X = H^L$.
 - lacksquare Goal: Infer a multi-hot intention vector $m{m}_t = [m_{t,1}, ..., m_{t,K}]$
 - \square $m_{t,k} = 1 \Leftrightarrow k^{\text{th}}$ concept belongs to the user intentions at time t
 - \square A straightforward method: treating m_t as a parameter to be optimized? (\times)
 - □ over-parameterization; cause efficiency burdens
 - We adopt a prototype-based method:
 - lacksquare define K intention prototypes, calculate similarity $s_{t,k} = \frac{m{x}_t \cdot m{c}_k}{\|m{x}_t\|_2 \|m{c}_k\|_2}$
 - \square draw m_t from $m_t \sim \text{Categorical}(\text{Softmax}(s_{t,1}, s_{t,2}, ..., s_{t,K}))$

Structured Intent Transition

- ☐ In this step, we model intent transitions with GNN.
 - lacksquare Learn a personalized intent feature matrix $m{Z}_t = [m{z}_{t,1},...,m{z}_{t,K}] \in \mathbb{R}^{K imes d'}$
 - lacksquare From item space to intention space $m{z}_{t,k} = m_{t,k} \mathrm{MLP}_k(m{x}_t)$
 - ☐ Model the intent transition on the concept graph A (ConceptNet)
 - ☐ Pre-defined concepts and their relations can be treated as knowledge; underlying cognitive activity is stored in the connections among concepts.
 - lacksquare We adopt the message-passing framework $m{Z}_{t+1} = \mathcal{F}(m{Z}_t, m{A})$

Item space

Structured intent space

Intent Decoder

 \square After obtaining the future intent features Z_{t+1} and intent vector m_{t+1} , the intent decoder is defined as:

$$\boldsymbol{x}_{t+1} = \sum_{k=1}^{K} m_{t+1,k} \mathrm{MLP}'_k(\boldsymbol{z}_{t+1,k})$$

 \square Recommendation probability of item v_{t+1} :

$$p(v_{t+1}|[v_1, v_2, ..., v_t]) = \operatorname{Softmax}(\boldsymbol{x}_{t+1}\boldsymbol{V}^T)$$

lacksquare Objective Function $\mathcal{L}_u = \frac{1}{|\mathcal{S}^{(u)}|} \sum_{v_{t+1} \in \mathcal{S}^{(u)}} -\log p(v_{t+1}|[v_1, v_2, ..., v_t])$

Experiments

- ☐ We aim to answer the following three questions:
 - □ Q1: How does our method perform compared with other state-of-the-art sequential recommendation methods?
 - □ Q2: Can our method identify explainable user intents and model the structured intent transition accurately?
 - □ Q3: Is the intent extraction and structured intent transition module helpful in our method?

Experimental Settings

□ Datasets

- ☐ Amazon: contains a large number of product reviews from Amazon.com
 - ☐ We choose the "Beauty" category dataset.
- ☐ Steam: a popular online video game platform
- ☐ Epinions: a popular online consumer review website *Epinions.com*
- ☐ MovieLens: a dataset about movie rating, including ML-1m an ML-20m

Experimental Settings

□ Datasets preprocessing procedures

- convert all reviews/ratings to implicit feedback of 1
- ☐ remove users and items if they have fewer than 5 records

4.79%

0.54%

- □ build the interaction sequence sorted by the timestamps for each user
- ☐ obtain concepts of items from the available meta-data
 - □ e.g., items' descriptions, reviews, etc.

163.5

144.4

TABLE 3: Statistics of the datasets.

ML-1m

ML-20m

6.040

138,493

3,416

26,744

#Users #Items #Interactions Avg.length Dataset Density 40,226 54.542 0.35m8.8 0.02% **Beauty** 13,044 3.5m Steam 281,428 12.4 0.10% **Epinions** 5,015 8,335 26.9k 5.37 0.06%

1.0m

20m

TABLE 4: Statistics of preprocessed concepts of the datasets.

Dataset	#Concepts	#Edges	Avg.concepts/item
Beauty	592	2,791	4.45
Steam	229	472	4.49
Epinions	114	467	5.50
ML-1m	96	327	1.94
ML-20m	316	842	4.21

Experimental Settings

□ Evaluation metrics

- ☐ Hit Rate (HR) $HR@k = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \delta(|\mathcal{T}_u \cap \mathcal{R}_{u,k}| > 0)$
- Normalized Discounted Cumulative Gain (NDCG)

NDCG@
$$k = \frac{1}{Z}$$
DCG@ k

$$= \frac{1}{Z} \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \sum_{i=1}^{k} \frac{\delta(r_{u,i} \in \mathcal{T}_u)}{\log_2(i+1)}$$

■ Mean Reciprocal Rank (MRR)

$$MRR = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{rank_u}$$

Baselines

- Non-sequential methods
 - □ PopRec, BPR-MF, NCF

- □ Sequential methods
 - ☐ Markov chain based methods: **FPMC**, **Caser**
 - ☐ RNN based methods: **GRU4Rec**, **GRU4Rec**+
 - ☐ Transformer based methods: SASRec, BERT4Rec

Experimental Results

■ Recommendation Accuracy

										_			
Datasets	Metric	PopRec	BPR-MF	NCF	FPMC	GRU4Rec	GRU4Rec ⁺	DGCF	Caser	SASRec	BERT4Rec	ISRec	Improv.
Beauty	HR@1 HR@5 HR@10 NDCG@5 NDCG@10 MRR	0.0077 0.0392 0.0762 0.0230 0.0349 0.0437	0.0415 0.1209 0.1992 0.0814 0.1064 0.1006	0.0407 0.1305 0.2142 0.0855 0.1124 0.1043	0.0435 0.1387 0.2401 0.0902 0.1211 0.1056	0.0402 0.1315 0.2343 0.0812 0.1074 0.1023	0.0551 0.1781 0.2654 0.1172 0.1453 0.1299	0.0626 0.1835 0.2778 0.1241 0.1543 0.1381	0.0475 0.1625 0.2590 0.1050 0.1360 0.1205	0.0906 0.1934 0.2653 0.1436 0.1633 0.1536	0.0953 0.2207 0.3025 0.1599 0.1862 0.1701	0.1233 0.2734 0.3594 0.2020 0.2296 0.2081	29.38% 23.88% 18.81% 26.33% 23.31% 22.34%
Steam	HR@1 HR@5 HR@10 NDCG@5 NDCG@10 MRR	0.0159 0.0805 0.1389 0.0477 0.0665 0.0669	0.0314 0.1177 0.1993 0.0744 0.1005 0.0942	0.0246 0.1203 0.2169 0.0717 0.1026 0.0932	0.0358 0.1517 0.2551 0.0945 0.1283 0.1139	0.0574 0.2171 0.3313 0.1370 0.1802 0.1420	0.0812 0.2391 0.3594 0.1613 0.2053 0.1757	0.0564 0.1825 0.2934 0.1392 0.1717 0.1400	0.0495 0.1766 0.2870 0.1131 0.1484 0.1305	0.0885 0.2559 0.3783 0.1727 0.2147 0.1874	$\begin{array}{c} 0.0957 \\ \hline 0.2710 \\ \hline 0.4013 \\ \hline 0.1842 \\ \hline 0.2261 \\ \hline 0.1949 \\ \end{array}$	0.1450 0.3622 0.5072 0.2570 0.3036 0.2612	51.52% 33.65% 26.39% 39.52% 34.28% 34.02%
Epinions	HR@1 HR@5 HR@10 NDCG@5 NDCG@10 MRR	0.0075 0.0339 0.0831 0.0206 0.0358 0.0430	0.0151 0.0472 0.1005 0.0316 0.0464 0.0540	0.0155 0.0538 0.0975 0.0338 0.0474 0.0543	0.0162 0.0578 0.1083 0.0373 0.0512 0.0546	0.0169 0.0629 0.1280 0.0431 0.0565 0.0681	0.0176 0.0737 0.1380 0.0456 0.0657 0.0700	0.0188 0.0736 0.1353 0.0491 0.0656 0.0693	0.0164 0.0733 0.1351 0.0444 0.0642 0.0668	0.0217 0.0822 0.1358 0.0530 0.0701 0.0699	$\begin{array}{c} 0.0220 \\ \hline 0.0866 \\ \hline 0.1462 \\ \hline 0.0534 \\ \hline 0.0724 \\ \hline 0.0705 \\ \end{array}$	0.0282 0.1129 0.1949 0.0699 0.0962 0.0885	28.18% 30.37% 33.31% 30.90% 32.87% 25.53%
ML-1m	HR@1 HR@5 HR@10 NDCG@5 NDCG@10 MRR	0.0141 0.0715 0.1358 0.0416 0.0621 0.0627	0.0914 0.2866 0.4301 0.1903 0.2365 0.2009	0.0397 0.1932 0.3477 0.1146 0.1640 0.1358	0.1386 0.4297 0.5946 0.2885 0.3439 0.2891	0.1583 0.4673 0.6207 0.3196 0.3627 0.3041	0.2092 0.5103 0.6351 0.3705 0.4064 0.3462	0.1770 0.4485 0.6032 0.3162 0.3660 0.3105	0.2194 0.5353 0.6692 0.3832 0.4268 0.3648	0.2351 0.5434 0.6629 0.3980 0.4368 0.3790	$\begin{array}{c} 0.2863 \\ \hline 0.5876 \\ \hline 0.6970 \\ \hline 0.4454 \\ \hline 0.4818 \\ \hline 0.4254 \\ \end{array}$	0.3184 0.6262 0.7363 0.4831 0.5189 0.4589	11.21% 6.57% 5.64% 8.46% 7.70% 7.87%
ML-20m	HR@1 HR@5 HR@10 NDCG@5 NDCG@10 MRR	0.0221 0.0805 0.1378 0.0511 0.0695 0.0709	0.0553 0.2128 0.3538 0.1332 0.1786 0.1503	0.0231 0.1358 0.2922 0.0771 0.1271 0.1072	0.1079 0.3601 0.5201 0.2239 0.2895 0.2273	0.1459 0.4657 0.5844 0.3090 0.3637 0.2967	0.2021 0.5118 0.6524 0.3630 0.4087 0.3476	0.1760 0.4361 0.6252 0.3267 0.3809 0.3278	0.1232 0.3804 0.5427 0.2538 0.3062 0.2529	0.2544 0.5727 0.7136 0.4208 0.4665 0.4026	$\begin{array}{c} 0.3440 \\ \hline 0.6323 \\ \hline 0.7473 \\ \hline 0.4967 \\ \hline 0.5340 \\ \hline 0.4785 \\ \end{array}$	0.3505 0.6484 0.7689 0.5024 0.5401 0.4841	1.89% 2.55% 2.89% 1.15% 1.14% 1.17%

- ☐ Sequential > Non-sequential
- ☐ Self-attention can provide large
- performance gains.
- ☐ Our method outperforms all the baselines.
- ☐ The sparser the dataset, the larger
- the improvement of our method.

Experimental Results

■ Showcases of Intent Extraction and Structured Intent Transition

Experimental Results

■ Ablation studies and hyperparameters sensitivities

TABLE 5: Performance comparison of **ISRec** and variants.

	В	eauty	ML-1m			
	HR@10	NĎCG@10	HR@10	NDCG@10		
ISRec	0.3594	0.2296	0.7363	0.5189		
w/o GNN	0.3311	0.2095	0.7222	0.4978		
w/o GNN&Intent	0.3092	0.1965	0.7058	0.4731		
BERT4Rec + concept	0.3037	0.1886	0.6987	0.4824		
SASRec + concept	0.3061	0.1845	0.6972	0.4643		

Conclusions

- We study the intent-aware sequential recommendation with structured intent transition.
- ☐ Why can't the current Sequential Recommender Systems make us satisfied enough?

知其 <u>然</u>,而不知其 <u>所以然</u> User Behaviors User Intentions

Modeling user intentions with GNN:
Try to promote human-like Recommender Systems.

References

- □ W.-C. Kang, et al. "Self-attentive sequential recommendation." ICDM, 2018.
- ☐ F. Sun, *et al.* "Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer." CIKM, 2019.
- □ J. Tang, et al. "Personalized top-n sequential recommendation via convolutional sequence embedding." WSDM, 2018.
- □ R. Speer, *et al.* "Conceptnet 5: A large semantic network for relational knowledge." in The People's Web Meets NLP. Springer, 2013.
- X. He, et al. "Neural collaborative filtering." WWW, 2017.
- □ S. Wang, et al. "Intention2basket: A neural intention-driven approach for dynamic next-basket planning." IJCAI, 2020.
- N. Zhu, et al. "Sequential modeling of hierarchical user intention and preference for nextitem recommendation." WSDM, 2020.
- Y. Cen "Controllable Multi-Interest Framework for Recommendation." KDD 2020.

Intention-aware Sequential Recommendation with Structured Intent Transition

Published in: IEEE Transactions on Knowledge and Data Engineering (Early Access)

Haoyang Li; Xin Wang; Ziwei Zhang; Jianxin Ma; Peng Cui; Wenwu Zhu. Intention-aware Sequential Recommendation with Structured Intent Transition. *IEEE TKDE*, 2021.

Thanks!

Haoyang Li, Tsinghua University lihy18@mails.tsinghua.edu.cn

