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Abstract—Human behaviors in recommendation systems are driven by many high-level, complex, and evolving intentions behind their
decision making processes. In order to achieve better performance, it is important for recommendation systems to be aware of user
intentions besides considering the historical interaction behaviors. However, user intentions are seldom fully or easily observed in
practice, so that the existing works are incapable of fully tracking and modeling user intentions, not to mention using them effectively into
recommendation. In this paper, we present the Intention-Aware Sequential Recommendation (ISRec) method, for capturing the
underlying intentions of each user that may lead to her next consumption behavior and improving recommendation performance.
Specifically, we first extract the intentions of the target user from sequential contexts, then take complex intent transition into account
through the message-passing mechanism on an intention graph, and finally obtain the future intentions of this target user from inference
on the intention graph. The sequential recommendation for a user will be made based on the predicted user intentions, offering more
transparent and explainable intermediate results for each recommendation. Extensive experiments on various real-world datasets
demonstrate the superiority of our method against several state-of-the-art baselines in sequential recommendation in terms of different
metrics.
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1 INTRODUCTION

NOWADAYS, recommendation systems have been deeply
integrated with services that provide personalized

content to users, including E-commerce, social media, and
search engines, etc. Many scenarios in recommendation can
be modeled as a sequential recommendation problem, i.e.,
using historical user behaviors to recommend what this
user might be interacted with in the future. For example,
in online shopping systems, content providers need to
generate recommendations for users based on their historical
shopping logs.

There exists a rich literature in sequential recommenda-
tions [1], [2], [3], [4], [5], [6], [7]. Some early works utilize
the Markov Chain (MC) to predict the next behavior of
the target user through learning a probability matrix that
models the relations between the current user behavior
and the next [1], [2], [3], [6], [8], [9]. With the success
of Deep Neural Network (DNN), many works begin to
focus on developing DNN based sequential recommendation
models. Recurrent Neural Network (RNN) based methods
for sequential recommendation are classic examples, which
aggregate all history behaviors of users via a hidden state
and achieve promising performance [10]. More recently,
Transfomer, based on the self-attention mechanism, is also
adopted by sequential recommendation models [4], [5] to
uncover the syntactic and semantic patterns between items
in user history behaviors.
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In practice, user behavior patterns in recommendation
systems are highly driven by their intentions behind. To
provide better recommendations, it is important to capture
user intentions besides their historic interactions. However,
existing works on sequential recommendation are hard to
discover the user intentions which motivate a consumption
behavior and thus lack the ability to explain the reason for
a particular item to be recommended to a user. Discovering
and modeling user intentions poses great challenges for
sequential recommendation because user intentions are
seldom fully observed, nor do they always stay static and
fixed in the course of time. Furthermore, users can have
multiple intentions which are correlated with each other and
the changing of one user intention may lead to the changes
of other intentions, which makes capturing user intentions
dynamically even more difficult.

To solve these challenges, in this paper, we proposed
ISRec, a structured intention-aware model for sequential
recommendation. Besides being more effective in recommen-
dation accuracy, ISRec is able to explain why a particular
item is chosen as the candidate for the next recommen-
dation. Specifically, we first discover user intentions from
their past consumption behaviors such as rating an item,
writing reviews for an item, etc., then adopt an intention
graph to capture the correlations among user intentions.
The structured intent transition process for the target user
is modeled through the message passing schema on this
intention graph and the future user intention can be obtained
by conducting inference on the intention graph. As such, the
final recommendation can be made based on the predicted
future user intentions, with the ability to explain the reason
of selecting a candidate item for the next recommendation.
Therefore, our proposed ISRec model increases the recom-
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mendation explainability by identifying the underlying user
intentions that may lead to their next consumption behaviors,
providing a more transparent and explainable intermediate
for sequential recommendation.

We further conduct extensive experiments on several
real-world datasets, showing that the proposed ISRec model
outperforms various state-of-the-art baselines consistently
in terms of different evaluation metrics such as Hit Ratio,
NDCG (normalized discounted cumulative gain) and MRR
(mean reciprocal rank). Our promising experimental results
demonstrate that the ISRec model can identify explainable
user intentions, model the structured user intent transition
process, and make accurate sequential recommendations in
a more explainable way.

The contributions of this paper are summarized as
follows:

• We propose to utilize user intentions behind consump-
tion behaviors to improve both the effectiveness and
the explainability in sequential recommendation.

• Our proposed intention-aware sequential recommen-
dation model (ISRec) is capable of identifying user
intentions as well as recognizing the structured user
intent transition process to provide more transparent
and explainable intermediate results for sequential
recommendation.

• We conduct extensive experiments on several real-
world datasets, comparing the proposed ISRec model
with various state-of-the-art approaches. Empirical
experimental results demonstrate the effectiveness
and the explainability of our ISRec model.

We review related work in Section 2, followed by a de-
tailed formulation of our proposed Intention-Aware Sequen-
tial Recommendation (ISRec) model in Section 3. Section
4 presents our experimental results including quantitative
comparisons, case studies, and ablation studies. Finally, we
conclude our work in Section 5.

2 RELATED WORK

In this section, we review related works on collaborative
filtering, sequential recommendation, intention-aware recom-
mendation, and structured modeling.

Collaborative Filtering. When it comes to recommenda-
tion, collaborative filtering with no doubt serves as one of
the most widely adopted strategies so far. The core idea
of collaborative filtering aims at learning user preferences
based on their historical behaviors. Matrix factorization,
one of the most famous collaborative filtering technique,
factorizes the user-item interaction matrix into two low-rank
matrices where each low-rank matrix represents either latent
user preferences or latent item features. In addition, item
similarity based methods [11], [12] estimate user preferences
through directly looking at their past consumed items and
calculating the similarities between the candidate items and
those consumed items. The more recent deep learning based
methods [13], [14], [15] achieve massive improvement by
learning highly informative user preference representations.
These works do not take sequential factors into account.

Sequential Recommendation. Compared with the classic
recommendation methods such as collaborative filtering [16],

[17], [18] or matrix factorization [19], [20], sequential rec-
ommendation targets at capturing the temporal changing
patterns of user preferences. Early works on sequential
recommendation typically use Markov Chains (MC) to model
users’ sequential patterns based on their historical behaviors.
The key assumption behind this line of works is that the
next item users may consume solely depends on their last
consumed item (i.e., first-order MC) or last several consumed
items (i.e., high-order MC) [1], [3], [6], [9]. The huge success
of Deep Neural Networks (DNN) has motivated the appli-
cations of deep models in sequential recommendation as
well [4], [5], [6]. One line of works is based on RNN and its
variants, which seeks to encode user history behaviors into
latent representations. In particular, Hidasi et al. [21] employ
Gated Recurrent Units (GRUs) to capture the sequences
of user behaviors for session-based recommendation, and
they later propose an improved version [22] with a different
loss function. Liu et al. [7] and others [23], [24] study the
problem of sequential recommendation with the contextual
information taken into accounts. In addition, unidirectional
[4] and bidirectional [5] self-attention mechanisms are also
utilized to capture sequential patterns of user behaviors,
which achieve state-of-the-art performance on sequential
recommendation. However, these methods merely focus on
modeling the relations between the history behaviors of
the target user and her next behavior, lacking the ability to
capture user intentions hidden in the behaviors. We argue
it is the user intentions that drive users to conduct certain
behaviors and therefore existing methods suffer from being
unable to understand why the target user conducts her next
behavior.

Intention-aware Recommendation. More recently, vari-
ous intention-aware recommendation literatures that con-
sider intentions in users’ behavior modeling are proposed.
Zhu et al. [25] use the category of items in users’ behaviors
to represent intentions directly. This method is simple and
provides an intuitive way to define user intentions. Chen et al.
[26] adopt attention mechanism to capture users’ category-
wise intention, which is denoted as a pair of action type
and item category. In [27], a neural intention-driven method
is proposed to model the heterogeneous intentions behind
users’ complex behaviors. Wang et al. [28] focus on some
limitations of classical Collaborative Filtering methods, and
try to disentangle the representations of users and items
under different intentions. Tanjim et al. [29] utilize self-
attention mechanism to find similarities in user behaviors
and temporal convolutional network to capture users in-
tentions. However, they pay little attention to modeling
the relations between user intentions especially when users
have multiple intentions affecting users’ behaviors. They also
ignore structured user intent transition which can provide a
strong inductive bias for sequential recommendation.

Structured Modeling. The ability to understand struc-
tured relationships in raw sensory data is an important
component of human cognition [30] and graphs are a
natural representation to model such structured relationships.
Thanks to the rapid development of Graph Neural Network
(GNN), there are more and more research works focusing on
structure modeling [31], [32], which generally aim to model
the relationships and dynamics among nodes in graphs.
By studying the structured relations behind the observed
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data, these models can not only improve their predictive
performance but also simulate the cognitive process of
human decision making. The majority of the existing works
on utilizing graphs to simulate human cognitive process
belong to the field of physical systems and computer vision.
To overcome the limitations of models based on low-level
pixel reconstruction, Kipf et al. [30] model the state transi-
tion of high-level objects in physical systems and Kossen
et al. [33] explicitly reason about the relationships between
objects in videos over a graph structure. However, utilizing
the graph structure to identify user intentions and infer
their relationships for providing better recommendations
is largely unexplored in sequential recommendation. We
note that there also exist several works mapping items to
nodes/entities in knowledge graphs and utilizing the extra
information provided by the knowledge graphs to enhance
recommendation [34], [35]. These works follow a different
problem setting and are therefore orthogonal to our problem
in this paper.

3 METHOD

In this section, we first introduce the problem formulation
and then present the proposed ISRec model in detail.
Notations in this paper are summarized in Table 1.

3.1 Problem Formulation
In this paper, we consider a sequential recommendation
problem where U = {u1, u2, ..., u|U|} denotes the set of users
and V = {v1, v2, ..., v|V|} represents the set of items. A user
behavior dataset consists of the interactions between these
|U| users and |V| items. For each user u ∈ U , the interaction
sequence sorted in the chronological order is denoted as
Su =

[
v

(u)
1 , v

(u)
2 , ..., v

(u)
|Su|

]
, in which v(u)

t ∈ V is the item that
user u interacted at time index t. Specifically, similar to [1],
[4], [5], [6], the time index t in v(u)

t denotes the order in which
an action occurs in Su with larger t indicating a more recent
interaction, and we do not consider the absolute timestamp
as in temporal recommendations [10], [36].

In addition to the interaction sequence, we also consider
available description information of items, e.g., item titles,
categories, reviews, etc. For each item, we extract keywords
from all description information and refer to these extracted
keywords as concepts. These concepts indicate the possible
intentions of users while interacting with the corresponding
items and provide the source of explainability. We use an
item-concept matrix E = [ei,k, 1 ≤ i ≤ |V| , 1 ≤ k ≤ K] to
denote relations between items and concepts, where ei,k = 1
if concept k appears in the description information of item
i, ei,k = 0 otherwise, and K is the number of concepts. In
our method, the user intention is defined as a subset of all
possible K concepts, denoted as a multi-hot intention vector
mt = [mt,1,mt,2, ...,mt,K ] ∈ {0, 1}K . Namely, the user
intentions at time index t consist of the concept k if mt,k = 1.
The intention graph is defined as a graph representing the
relations between the K concepts, which consists of concept-
relation-concept triples. The intention transition is defined
as predicting the intentions at the next time index, which
are correlated with the intentions now, conditioned on the
intention graph.

TABLE 1: Notations used in this paper.

Notation Description

U ,V user and item set
Su interaction item sequence of user u
T maximum sequence length
K number of total concepts
λ number of activated concepts
E ∈ {0, 1}|V|×K item-concept matrix
d, d′ ∈ N latent vector dimensionality
V ∈ R|V|×d item embedding matrix
C ∈ RK×d concept embedding matrix
P ∈ RT×d positional embedding matrix
t index of the time
mt ∈ RK intention vector
xt ∈ Rd representation of the behavior sequence
Zt ∈ RK×d′ intention feature matrix

Given all this information, the sequential recommenda-
tion problem can be formalized as to predict the probability
over all items for every user u ∈ U at time index t = |Su|+1:

p
(
v

(u)
|Su|+1|Su

)
.

3.2 Model Framework

The framework of ISRec is shown in Fig. 1. ISRec consists
of the following 4 modules: (1) Transformer-based Encoder:
we use a two-layer transformer to encode the item sequence.
As the core of the transformer, the self-attention mechanism
can capture the dependencies between items in the behavior
sequence. (2) Intent extraction: we extract the intentions
of users from the representation of the item sequence.
(3) Structured intent transition: we infer the possible user
intentions at the next time index using a structured transition.
(4) Intent decoder: based on the intents identified in the last
module, the intent decoder predicts which item out of V is
mostly likely to be interacted by the user. We elaborate the
details of the 4 modules in the following subsections.

3.3 Transformer-based Encoder

The transformer-based encoder further consists of two sub-
modules: the embedding submodule and the self-attention
submodule.

Embedding Submodule. To represent an item sequence,
we first construct an item embedding matrix V =
[v1, ...,v|V|] ∈ R|V|×d, where each item vi ∈ V is represented
as a d dimensional vector vi, and a concept embedding
matrix C = [c1, ..., cK ] ∈ RK×d, where each concept is also
represented as a d dimensional vector ci. To encode the
position of items in the sequence, we adopt an additional
positional embedding P = [p1, ...,pT ] ∈ RT×d, where pi

represents the embedding of position i, and T is a preset
maximum sequence length. The representation of an element
in the behavior sequence is obtained as:

hi = vi + pi +
∑

ei,j=1

cj , (1)

i.e., we sum the item embedding, the concepts embedding
corresponding to the item, and the positional embedding.
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Fig. 1: ISRec Model Framework. After passing the user interaction sequence to a Transformer-based encoder, the keys of
ISRec are intent-aware modules which include an intent extraction module and a structured intent transition module. Then,
an intent decoder module output recommendation results using the identified user intents.

All embedding vectors are parameters that can be learned
during training.

After the embedding submodule, we transform the input
user behavior sequence Su into its hidden representations as
follows:

H0 = [h0
1,h

0
2, ...,h

0
T ]. (2)

Self-attention Submodule. We adopt the self-attention
mechanism to capture the dependencies among different
items within a behavior sequence. One layer in the self-
attention submodule can be formulated as follows:

Sl = SA(H l) = Attention(H lW l
Q,H

lW l
K ,H

lW l
V ), (3)

H l+1 = FFN(Sl) = ReLU(SlW l
1 + bl1)W l

2 + bl2, (4)

where W l
Q,W

l
K ,W

l
V ∈ Rd×d are parameters for queries,

keys, values in the lth attention layer and W l
1,W

l
2 ∈ Rd×d

and bl1, b
l
2 ∈ Rd are parameters in the lth feed-forward

network. The queries, keys, and values come from the
same place, i.e., the input sequence. The meaning of queries,
keys, and values is the sequence embedding. Intuitively, the
attention layer learns to assign different attention weights to
capture the complex relations among items in the behavior se-
quence1 and the position-wise feed-forward network endows
the model with nonlinearities and capture the interactions
among different dimensionalities. We also apply dropout,
residual connection, and layer normalization at each layer,
similar to standard Transformer.

We denote the outputs of L such layers as X =
[x1, ...,xT ] = HL, which are used in subsequent modules.
Note that xt has integrated all sequential information before
the time index t.

1To prevent data leakage, we only consider the attention between
Query i and Key j if j ≤ i, i.e., only considering attentions of items
interacted ahead of time.

3.4 Intent Extraction
Here we explicitly extract explainable user intents from the
encoded sequence hidden representations X . Note that the
intents are changing and not static with respect to the time
index t.

More specifically, for each time index 1 ≤ t ≤ T , we
aim to infer an intention vector mt = [mt,1,mt,2, ...,mt,K ],
where mt,k = 1 indicates that concept k belongs to the user
intentions appearing in the behavior sequence represented as
xt, and mt,k = 0 otherwise. One straightforward approach
to learn mt is directly treating mt as a parameter to be
optimized. However, it will lead to over-parameterization
and cause efficiency burdens since we need to learn a K
dimensional intention vector for each user at each time
index. As an alternative, recall that we have introduced
an embedding vector ci for each concept in the Transformer-
based Encoder. We adopt the similarity between the sequence
representation and concept embeddings as the probability
of activating the concepts. Then, mt can be drawn from the
following categorical distribution:

mt ∼ Categorical(Softmax(st,1, st,2, ..., st,K)), (5)

where st,k denotes the similarity of the sequence representa-
tion xt and the concept embedding ck. We adopt the Gumbel-
Softmax estimator to estimate the categorical distribution,
which is non-differentiable when trained using standard
back-propagation. In choosing similarities, a common choice,
the inner product similarity, will result in the mode collapse
problem, i.e., only concepts with a large norm will be
activated. To prevent such a degenerated case, we adopt
the cosine similarity between two vectors, i.e.,

st,k =
xt · ck

‖xt‖2 ‖ck‖2
, (6)

where · is the dot product and ‖z‖2 is the norm of vector z.
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3.5 Structured Intent Transition
Next, we conduct intent transitions using the extracted
intention vector. However, we cannot directly transit mt

because of two reasons. Firstly, mt is learned by using
common concept embeddings and thus not personalized.
Even if two users have similar intentions at time index
t, their transition patterns may be different, leading to
different intentions at time index t+1. Secondly, the intention
vector mt is discrete and contains a single number for
each intention, which makes the subsequent optimization
challenging.

To solve these challenges, we first learn a personalized
intent feature matrix using the sequence representation xt

and the intention vector mt. Specifically, denote the intent
feature matrix as

Zt = [zt,1, ...,zt,K ] ∈ RK×d′
, (7)

where d′ is the dimensionality and zt,k is the feature vector
for intent k calculated as:

zt,k = mt,kMLPk(xt), (8)

i.e., we learn a separate MLP for each concept to transform
the sequence representation into an intent feature, and only
activated concepts have non-zero elements. Then, we can use
Zt for intent transition because it is both personalized and
continuous.

To model the relations between different intentions, we
adopt a graph G with the adjacent matrix denoted as A ∈
RK×K , where Ai,j indicates the relations between concept
i and concept j. In this paper, we construct A based on the
publicly available concept graph (i.e., ConceptNet2). Ai,j = 1
if concept i and j have semantic relations in ConceptNet,
and Ai,j = 0 otherwise. Our method can also be extended
to other available concept relations or learning the relation.

We adopt the message-passing framework [37] to model
the transition of intents on the concept graph:

Zt+1 = F(Zt,A), (9)

where F(·) is the message-passing function. Specifically, we
adopt Graph Convolutional Network (GCN) [38], a simple
yet effective message-passing architecture, where the lth

GCN layer is:

H l+1
G = σ(D̂−

1
2 ÂD̂−

1
2H l
GW

l), (10)

where H l
G is node representations in the lth layer, W l is a

learnable weight matrix, σ is a non-linear activation function
such as ReLU, Â = A + I , I is the identity matrix, and D̂
is a diagonal degree matrix with D̂i,i =

∑
j Âi,j . Intuitively,

GCNs pass the node features to their neighborhoods in each
layer, thus modeling the relations between different nodes,
i.e., concepts.

The intent transition process can be modeled as taking
the intent feature matrix as the inputs of GCN, i.e., H0

G = Zt,
and taking the node representations after L GCN layers as
the output of future intents, i.e., Zt+1 = HL

G . Then, we
obtain the new intent vector mt+1 by considering the norm
of the corresponding intent feature vector, i.e., mt+1,k = 1 if
and only if ‖zt+1,k‖2 ≥ g({‖zt+1,k‖2 , 1 ≤ k ≤ K}), where

2http://conceptnet.io/

g is an operator that outputs the λ-th largest value of the
input. This guarantees that the number of activated concepts,
i.e., λ, that remains the same in the course of time, i.e.,∑

kmt,k =
∑

kmt+1,k.

3.6 Intent Decoder
After obtaining the future intent features Zt+1 and the future
intent vector mt+1, we need to make recommendations on
the next item. We adopt a decoder as follows:

xt+1 =
K∑

k=1

mt+1,kMLP′k(zt+1,k). (11)

Eq. (11) can be considered as a reverse process of Eq. (8) to
decode the intent features into a sequence representation.

Then we calculate the similarity of the sequence rep-
resentation with the item embedding vector to obtain a
recommendation probability:

p(vt+1|[v1, v2, ..., vt]) = Softmax(xt+1V
T ) (12)

3.7 Objective Function and Optimization
Following the conventional training methods of sequential
recommendation, we train the model by predicting the next
item for each position in the input sequence. i.e., predicting
vt+1 given the input sequence [v1, v2, ..., vt]. We adopt the
negative log-likelihood as the objective function and take the
average of all users, i.e.,

Lu =
1

|S(u)|
∑

vt+1∈S(u)

− log p(vt+1|[v1, v2, ..., vt]), (13)

L =
1

|U|
∑
u∈U
Lu + α||Θ||22, (14)

where α denotes the regulation coefficient and Θ denotes
all model parameters. It is easy to see that all modules of
ISRec are differentiable and thus the model can be trained
end-to-end using back-propagation. The training procedure
of our method is listed in Appendix A.

3.8 Time Complexity Analysis
Here, we analyze the time complexity of the proposed
method, given the user interaction item sequence with the
length n. The time cost mainly comes from the following
three parts, namely the Transformer layer, the Multi-layer
Perceptron (MLP), and the Graph Convolutional Network
(GCN). For the Transformer-based encoder, the complexity
is O(n2d+ nd2) from the self-attention and the feedforward
network. The dominant term is O(n2d) due to the self-
attention, where d is the dimensionality of item embedding.
Moreover, the MLP in our method has a computational
complexity O(nKdd′), where K is the constant number
of total concepts, and d′ is the feature dimensionality of
intents. For GCN in the structured intent transition, the
computational complexity is O(λ2), where λ represents the
number of activated intentions (nodes) in the concept graph
G and has a small value in our experiments (more details in
Section 4). So the overall training complexity of our proposed
method isO(n2d+nKdd′+λ2). The scalability concern about
our proposed method is that its computational complexity is

http://conceptnet.io/
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quadratic with the input sequence length n due to the self-
attention mechanism. Fortunately, a convenient property of
ISRec is that the self-attention computation can be effectively
parallelized, which is amenable to GPU acceleration.

3.9 Discussion

To provide more insights of our proposed method ISRec, we
analyze the relationship between ISRec and other existing
sequential recommendation methods.

Markov Chains (MC) based methods. There are many
works on sequential recommendation adopting Markov
Chains (MC), which can be typically divided into two
types, namely first-order MC based methods (e.g., FPMC
[1], TransRec [2], etc.) and high-order MC based methods
(e.g., Fossil [9], Caser [6], etc.). However, these methods only
capture local sequential patterns, and can not scale well
with the order that is generally small. Besides, the order of
MC needs to be specified in advance that is an impactive
hyperparameter. Compared with these methods, our ISRec
is conditioned on previous T items, and is able to deal with
hundreds of historical interacted items empirically (more
details in section 4). Due to the attention mechanism, ISRec
can adaptively attend on informative items of input sequence
instead of focusing on the last few items.

RNN based methods. RNN-based methods are recent
representative works for modeling sequence, including
GRU4Rec [21], GRU4Rec+ [22], etc. However, these methods
have a high dependency on time steps. The behavior on
time step t has to wait for the results until time step t − 1.
Compared with our method, they can not be effectively
parallelized using GPU.

Transformer based methods. Transformer based meth-
ods are also representative works recently. SASRec [4] adopts
transformer to predict the next item for each position in a
sequence. BERT4Rec [5] predicts the masked items in the
sequence using Cloze objective. These methods make full
use of self-attention to capture the item relations between
user sequence behaviors but are incapable of capturing user
intentions hidden in the behaviors. We argue that the user
intentions play an important role in driving users to conduct
certain behaviors. Besides, our method can be treated as a
generalization of these methods. If we do not extract user
intentions from behavior sequence (by removing the intent
extraction module) or conduct intent transition (by removing
structured intent transition module), our ISRec method can
degenerate to the transformer based methods. In section 4,
we show the significance of capturing the user intentions
and structured intent transitions with ablation study.

4 EXPERIMENTS

In this section, we evaluate our proposed method through
experiments. We aim to answer the following three questions:

• Q1: How does ISRec perform compared with other
state-of-the-art sequential recommendation methods?

• Q2: Can ISRec identify explainable user intents and
model the structured intent transition accurately?

• Q3: Is the intent extraction and structured intent
transition module helpful in ISRec?

4.1 Datasets

We compare ISRec with baselines on five publicly available
datasets from four real world applications.

• Amazon [39]3: This dataset contains a large number of
product reviews from Amazon.com and is split into
multiple datasets according to the top-level product
categories. In our experiments, we choose the “Beauty”
category dataset. Besides interaction records, we also
extract the concepts of items from two fields (i.e.,
“product title” and “review text”) in reviews data.

• Steam [4]4: This dataset contains rich English reviews,
crawled from Steam, a popular online video game
platform. Also, we extract interaction records and
concepts of items from two fields, i.e., “app name”
and “review text” in reviews.

• Epinions [40]5: This dataset is collected from a popu-
lar online consumer review website Epinions.com. It
contains rating scores and review texts of users on the
website, and spans more than a decade, from January
2001 to November 2013. We extract interaction records
from rating scores and concepts of items from “item
title” and “review text”.

• MovieLens [41]6: This dataset is about movie rating
and has been widely used to evaluate recommenda-
tion algorithms. We use two versions, i.e., ML-1m and
ML-20m, containing 1 million and 20 million rating
records, respectively. We extract interaction records
from rating data and concepts of each movie from
"movie name", and "genre" for ML-1m and "tag" for
ML-20m.

We follow the preprocessing procedure in [1], [4], [5],
[6] as follows. First, we convert all reviews (for Amazon,
Steam, and Epinions) or numeric ratings (for MovieLens) to
implicit feedback of 1 (i.e., the user interacted with the item).
Then we group the interaction records by users and build the
interaction sequence sorted according to the timestamps for
each user. We remove all users and items if they have fewer
than 5 records. The statistics of the preprocessed datasets
is summarized in Table 3, where “#Users” is the number of
users, “#Items” is the number of items, and “#Interactions”
means the number of interactions between users and items
in each dataset. “Avg.length” denotes the average interaction
sequence length of users, and “Density” is a common metric
to describe how dense the user item interaction is. These
datasets come from different domains and have diverse
statistics.

We further obtain the concepts of items from the available
meta-data, i.e., the descriptions of items. For Amazon,
Steam, and Epinions dataset, we adopt the keywords in
item title and review text. To reduce noises introduced by
uncommon words, we only consider the keywords existing in
ConceptNet [42], a widely used semantic network containing
common sense concepts as well as their relationships people
use in daily life. We map the n-grams in the item titles and
review texts to the concepts in ConceptNet. For example, the

3http://jmcauley.ucsd.edu/data/amazon/
4https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data
5https://cseweb.ucsd.edu/~jmcauley/datasets.html#social_data
6https://grouplens.org/datasets/movielens/

http://jmcauley.ucsd.edu/data/amazon/
https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data
https://cseweb.ucsd.edu/~jmcauley/datasets.html#social_data
https://grouplens.org/datasets/movielens/
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TABLE 2: Overall performance comparison of ISRec and baselines. In each row, the boldfaced score denotes the best result
and the underlined score represents the second-best result. Our ISRec outperforms all the baselines consistently in all
evaluation metrics on different datasets. The relative improvements of ISRec over the second-best result are shown in the
last column.

Datasets Metric PopRec BPR-MF NCF FPMC GRU4Rec GRU4Rec+ DGCF Caser SASRec BERT4Rec ISRec Improv.

Beauty

HR@1 0.0077 0.0415 0.0407 0.0435 0.0402 0.0551 0.0626 0.0475 0.0906 0.0953 0.1233 29.38%
HR@5 0.0392 0.1209 0.1305 0.1387 0.1315 0.1781 0.1835 0.1625 0.1934 0.2207 0.2734 23.88%
HR@10 0.0762 0.1992 0.2142 0.2401 0.2343 0.2654 0.2778 0.2590 0.2653 0.3025 0.3594 18.81%
NDCG@5 0.0230 0.0814 0.0855 0.0902 0.0812 0.1172 0.1241 0.1050 0.1436 0.1599 0.2020 26.33%
NDCG@10 0.0349 0.1064 0.1124 0.1211 0.1074 0.1453 0.1543 0.1360 0.1633 0.1862 0.2296 23.31%
MRR 0.0437 0.1006 0.1043 0.1056 0.1023 0.1299 0.1381 0.1205 0.1536 0.1701 0.2081 22.34%

Steam

HR@1 0.0159 0.0314 0.0246 0.0358 0.0574 0.0812 0.0564 0.0495 0.0885 0.0957 0.1450 51.52%
HR@5 0.0805 0.1177 0.1203 0.1517 0.2171 0.2391 0.1825 0.1766 0.2559 0.2710 0.3622 33.65%
HR@10 0.1389 0.1993 0.2169 0.2551 0.3313 0.3594 0.2934 0.2870 0.3783 0.4013 0.5072 26.39%
NDCG@5 0.0477 0.0744 0.0717 0.0945 0.1370 0.1613 0.1392 0.1131 0.1727 0.1842 0.2570 39.52%
NDCG@10 0.0665 0.1005 0.1026 0.1283 0.1802 0.2053 0.1717 0.1484 0.2147 0.2261 0.3036 34.28%
MRR 0.0669 0.0942 0.0932 0.1139 0.1420 0.1757 0.1400 0.1305 0.1874 0.1949 0.2612 34.02%

Epinions

HR@1 0.0075 0.0151 0.0155 0.0162 0.0169 0.0176 0.0188 0.0164 0.0217 0.0220 0.0282 28.18%
HR@5 0.0339 0.0472 0.0538 0.0578 0.0629 0.0737 0.0736 0.0733 0.0822 0.0866 0.1129 30.37%
HR@10 0.0831 0.1005 0.0975 0.1083 0.1280 0.1380 0.1353 0.1351 0.1358 0.1462 0.1949 33.31%
NDCG@5 0.0206 0.0316 0.0338 0.0373 0.0431 0.0456 0.0491 0.0444 0.0530 0.0534 0.0699 30.90%
NDCG@10 0.0358 0.0464 0.0474 0.0512 0.0565 0.0657 0.0656 0.0642 0.0701 0.0724 0.0962 32.87%
MRR 0.0430 0.0540 0.0543 0.0546 0.0681 0.0700 0.0693 0.0668 0.0699 0.0705 0.0885 25.53%

ML-1m

HR@1 0.0141 0.0914 0.0397 0.1386 0.1583 0.2092 0.1770 0.2194 0.2351 0.2863 0.3184 11.21%
HR@5 0.0715 0.2866 0.1932 0.4297 0.4673 0.5103 0.4485 0.5353 0.5434 0.5876 0.6262 6.57%
HR@10 0.1358 0.4301 0.3477 0.5946 0.6207 0.6351 0.6032 0.6692 0.6629 0.6970 0.7363 5.64%
NDCG@5 0.0416 0.1903 0.1146 0.2885 0.3196 0.3705 0.3162 0.3832 0.3980 0.4454 0.4831 8.46%
NDCG@10 0.0621 0.2365 0.1640 0.3439 0.3627 0.4064 0.3660 0.4268 0.4368 0.4818 0.5189 7.70%
MRR 0.0627 0.2009 0.1358 0.2891 0.3041 0.3462 0.3105 0.3648 0.3790 0.4254 0.4589 7.87%

ML-20m

HR@1 0.0221 0.0553 0.0231 0.1079 0.1459 0.2021 0.1760 0.1232 0.2544 0.3440 0.3505 1.89%
HR@5 0.0805 0.2128 0.1358 0.3601 0.4657 0.5118 0.4361 0.3804 0.5727 0.6323 0.6484 2.55%
HR@10 0.1378 0.3538 0.2922 0.5201 0.5844 0.6524 0.6252 0.5427 0.7136 0.7473 0.7689 2.89%
NDCG@5 0.0511 0.1332 0.0771 0.2239 0.3090 0.3630 0.3267 0.2538 0.4208 0.4967 0.5024 1.15%
NDCG@10 0.0695 0.1786 0.1271 0.2895 0.3637 0.4087 0.3809 0.3062 0.4665 0.5340 0.5401 1.14%
MRR 0.0709 0.1503 0.1072 0.2273 0.2967 0.3476 0.3278 0.2529 0.4026 0.4785 0.4841 1.17%

TABLE 3: Statistics of the datasets.

Dataset #Users #Items #Interactions Avg.length Density

Beauty 40,226 54,542 0.35m 8.8 0.02%
Steam 281,428 13,044 3.5m 12.4 0.10%

Epinions 5,015 8,335 26.9k 5.37 0.06%
ML-1m 6,040 3,416 1.0m 163.5 4.79%

ML-20m 138,493 26,744 20m 144.4 0.54%

TABLE 4: Statistics of preprocessed concepts of the datasets.

Dataset #Concepts #Edges Avg.concepts/item

Beauty 592 2,791 4.45
Steam 229 472 4.49

Epinions 114 467 5.50
ML-1m 96 327 1.94
ML-20m 316 842 4.21

review “I bought these athletic shoes which are comfortable.”
contains three concepts: athletic, shoes, and comfortable.
These concepts are a subset of words that correspond to
important explicit features of items and intents of users. For
MovieLens, we adopt a similar approach as Amazon, Steam,
and Epinions by only taking movie titles and genre/tag
into account since no review information is available. For
all datasets, we also filter both extremely rare concepts
(occurring in less than 0.5% of reviews), domain-dependent
frequent concepts, (e.g., "beautiful" in Beauty and "games"
in Steam), and meaningless concepts manually. In addition,
based on the chosen concepts, we build an intention graph
G based on ConceptNet for each dataset. The graph G

contains the relational knowledge between concepts. For
example, the concept “sport” has edges with other concepts
like “health”, “entertainment”, and “injury”. The statistics
of the preprocessed concepts and the filtered graph are
shown in Table 4, where “#Concepts” denotes the number of
concepts in each dataset, and “#Edges” denotes the number
of relations. We also list the average concepts per item in the
table.

4.2 Experimental Settings

4.2.1 Evaluation settings
We adopt the common leave-one-out evaluating strategy in
sequential recommendation [4], [6], [43], i.e., predicting the
next item in user sequence. Specifically, for each user u with
interaction sequence Su = [v

(u)
1 , v

(u)
2 , ..., v

(u)
|Su|], we hold-out

v
(u)
|Su| and v(u)

|Su|−1 for testing and validation, respectively, and
use the rest sequence for training. In addition, we follow [5]
and randomly sample 100 negative items that the user does
not interact with as negative items. The task is to rank these
101 items including 1 ground-truth positive item and 100
negative items.

4.2.2 Metrics
Based on the results of ranking, we evaluate all the models
in terms of three commonly used criteria.

• Hit Rate. Hit Rate (HR) gives the percentage that
recommended items contain at least one correct
item interacted by the user. For each user, since we
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only have one ground truth item in the test set,
HR@k equals to Recall@k, indicating that whether
the ground-truth positive items emerge in the top-k
recommended items.

HR@k =
1

|U|
∑
u∈U

δ(|Tu ∩Ru,k| > 0), (15)

where Tu denotes the set of testing items for user u,
Ru,k is the set of top-k items recommended for user u.
δ(x) is the indicator function, whose value is 1 when
x is true, and 0 otherwise.

• Normalized Discounted Cumulative Gain. Normal-
ized Discounted Cumulative Gain (NDCG) takes the
exact position of the correctly recommended items
into account.

NDCG@k =
1

Z
DCG@k

=
1

Z

1

|U|
∑
u∈U

k∑
i=1

δ(ru,i ∈ Tu)

log2(i+ 1)
,

(16)

where ru,i is the k-th item recommended for user u.
Z is a normalization constant, which is the maximum
possible value of DCG@k.

• Mean Reciprocal Rank. Mean Reciprocal Rank
(MRR) is the mean of reciprocal of the rank at which
the ground-truth item was retrieved.

MRR =
1

|U|
∑
u∈U

1

ranku
, (17)

where ranku refers to the rank position of the ground
truth item in the positive and negative items for user
u.

In our experiments, k is set to 1, 5, and 10. We report the
average results of these metrics across all users. For all these
metrics, the higher the value, the better the performance.

4.2.3 Baselines
To verify the effectiveness of our method, we compare ISRec
with the following recommendation baselines.

• PopRec: It is the simplest method that ranks all items
according to their popularity, i.e., the number of
existing interactions.

• BPR-MF [44]: It combines Bayesian personalized
ranking with matrix factorization model and learns
personalized rankings from implicit feedback.

• NCF [43]: NCF is a classical method that leverages a
Multi-Layer Perceptron (MLP) to learn the user-item
interaction function.

• FPMC [1]: To capture users’ long-term preferences
and behavior patterns, FPMC combines matrix factor-
ization and first-order Markov chains.

• GRU4Rec [21]: It is a session-based recommendation
method that employs GRU to characterize user be-
havior sequences. We treat the interaction sequence
of each user as a separate session.

• GRU4Rec+ [22]: It improves GRU4Rec by using a
new sampling strategy and an improved loss function.

• DGCF [28]: DGCF is an intention-aware method that
considers user-item relationships at the granularity of
user intentions by disentangled representations.

• Caser [6]: It is a unified and flexible method for
capturing both general user preferences and user
behavior patterns by utilizing CNN to model high-
order Markov chains.

• SASRec [4]: It is a transformer based method that
identifies which items are relevant to predict the
future item from a user’s behavior sequence.

• BERT4Rec [5]: It employs a deep bidirectional self-
attention to model user behavior sequences. By adopt-
ing the Cloze objective, it predicts the random masked
items in the sequence by jointly considering the left
and the right context.

We do not compare against temporal recommendation meth-
ods [10], [36] because they have different settings with ours.
We provide the implementation details including parameter
settings in Appendix B.

4.3 Recommendation Accuracy (Q1)

We report the performance of all the methods in Table 27. We
make the following observations.

Firstly, we can see that the sequential methods (e.g.,
FPMC and GRU4Rec) outperform the non-sequential meth-
ods (e.g., BPR-MF and NCF) in general. The methods that
only consider user actions without the sequential order, do
not make full use of the sequence information and report
the worse performance. Specifically, compared with BPR-MF,
the main advantage of FPMC comes from modeling user
historical actions with first-order Markov chains, namely
considering the sequence order, so that FPMC reports better
results than BPR-MF. This can verify that sequential pattern is
important for improving the predictive ability for sequential
recommendations.

The attention mechanism can provide reasonably large
performance gains. SASRec and BERT4Rec, using a left-to-
right and bidirectional self-attention respectively to model
user behavior sequences, outperform the other non-attention
based methods. The results are consistent with the litera-
ture [4], [5].

Our ISRec achieves the best performance on all datasets
with respect to all evaluation metrics, demonstrating the su-
periority of our model. In general, the proposed ISRec model
improves up to 17.41% on HR@10, 19.86% on NDCG@10,
and 18.19% on MRR (on average) against the strongest
baseline on all datasets. Considering the results of Steam
dataset, ISRec achieves significant improvement, i.e., 51.52%
on HR@1, 33.65% on HR@5, 26.39% on HR@10, 39.52%
on NDCG@5, 34.28% on NDCG@10, and 34.02% on MRR
against the strongest baseline. The fact that ISRec greatly
outperforms SASRec and BERT4Rec which adopt a similar
attention module as ISRec but neglects the user intentions
well prove the importance of modeling user intentions. ISRec
also achieves better performance than the intention-aware
method DGCF, indicating the ability of our method to model
user intentions and the important roles of the structured
intent transition. By identifying user intents and learning
the structured intent transition, ISRec shows the ability to
capture user preferences more effectively.

7In Table 2, we omit the metric NDCG@1 because it is equal to
HR@1.
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(a) Selected user on Beauty

(b) Selected user on Steam

Fig. 2: Showcases of candidate intent(s) generation and activated intent(s) selection procedures for sequential recommenda-
tions made by ISRec on Beauty and Steam.

We also notice that the improvement of ISRec on Beauty,
Steam, and Epinions datasets is more substantial than
the improvement on MovieLens. ISRec improves over the
strongest baselines w.r.t NDCG@10 by 23.31% on Beauty,
34.28% on Steam, and 32.87% on Epinions but only 7.70% on
ML-1m and 1.14% on ML-20m. One plausible reason is that
the Beauty, Steam, and Epinions datasets are sparser, making
it more difficult to make recommendations only using the
co-occurrence statistics in user interaction sequences as
in the baselines. ISRec alleviates this issue by modeling
the underlying intentions and the structured transition of
intentions of users and thus leading to better results.

4.4 Showcases of Intent Extraction and Structured In-
tent Transition (Q2)

To further illustrate the effectiveness of our intent extraction
and structured intent transition process, we present the inter-
mediate candidate intent(s) generation and activated intent(s)
selection procedures for sequential recommendations made
by our ISRec model.

Fig. 2 shows the candidate intents generation and acti-
vated intents selection procedures for two randomly selected
users, one from Beauty (a) and the other from Steam (b).
Each grey box represents a recommended item where the
blue rectangle depicts the name of the item (e.g., avocado
oil), followed by the candidate intents to be activated (e.g.,
brightening, moisturizers, defense, mousses, fiber, wrinkle,
etc.) and the intention graph indicating the structured
relationships among different intentions where the activated
intentions are colored with orange (e.g, wrinkle).

We observe from Fig. 2 that the user intentions on Beauty
transit from wrinkle through scalp and skin to face in the
course of time, and transit gradually from crime, fight through
war, destruction and tank, military to crime, violent on Steam,
demonstrating the effectiveness and explainability of our
structured intent transition process. ISRec can also learn
to infer user intentions not in the candidate set, e.g., Red
Orchestra 2 is about military, showing its strong inference
ability.

4.5 Effectiveness of Intent Extraction and Structured
Intent Transition (Q3)

TABLE 5: Performance comparison of ISRec and variants.

Beauty ML-1m
HR@10 NDCG@10 HR@10 NDCG@10

ISRec 0.3594 0.2296 0.7363 0.5189
w/o GNN 0.3311 0.2095 0.7222 0.4978
w/o GNN&Intent 0.3092 0.1965 0.7058 0.4731

BERT4Rec + concept 0.3037 0.1886 0.6987 0.4824
SASRec + concept 0.3061 0.1845 0.6972 0.4643

To gain a deep insight on the ISRec, we perform ab-
lation studies over a number of key components related
to extracting intentions and structured intent transition.
We compare ISRec with the following two variants: one
without the message-passing in Section 3.5, i.e., setting the
intention feature Zt+1 = Zt, and one without the message-
passing nor the intention extraction module, i.e., setting
xt+1 = xt. We term these two variants “w/o GNN” and
“w/o GNN&Intent”, respectively. The results are shown in
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Fig. 3: Impact of different intent feature dimensionalities on model performance on Beauty.
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Fig. 4: Impact of different numbers of intents allowed to be activated on model performance on Beauty.

Table 5. We only report the results using the metric HR@10
and NDCG@10 on Beauty and ML-1m, while results using
other metrics and datasets show a similar pattern.
• ISRec w/o GNN&Intent reports similar results as

BERT4Rec. Since we also use a transform-based
encoder, such results are consistent with our model
design.

• Both intent extraction and structured intent transition
modules can significantly improve the performance
of ISRec, demonstrating the significance of accurately
modeling structured transition of user intents.

We also consider incorporating available concepts for some
baselines. We choose the second-best and third-best methods
in Table 2, i.e., BERT4Rec and SASRec. From Table 5, we
can observe the performance gain of these variants (terms as
“BERT4Rec + concept” and “SASRec + concept”) due to the
concept information, compared with the results in Table 2.
However, ISRec still outperforms these two variants using
the same extra concept information.

4.6 Sensitivities of Hyperparameters
We also conduct experiments testing the influences of dif-
ferent hyperparameter settings on the performance of our
ISRec model.

4.6.1 Impact of feature dimensionality of intents d′

Fig. 3 shows how varying the feature dimensionality of
intents can affect the performance of ISRec on Beauty. We
observe that the performance first increases with larger
feature dimensions and drops after the intent feature dimen-
sionality exceeds 8 in terms of most metrics. A larger hidden
dimensionality of d′ does not necessarily lead to better model
performance, which is probably caused by overfitting.

4.6.2 Impact of numbers of activated intents λ
Fig. 4 presents the influences of different numbers of
activated intents on the model performance. Similar to
the feature dimensionality, the performance of ISRec first
increases and then drops after a peak which occurs between
10 and 15. The results show that though setting large values
for hyperparameters will increase the model capacity, it
will not always lead to better results, indicating that setting
hyperparameters corresponding to real user intents is helpful
for ISRec. In our experiments, we find that uniformly setting
the feature dimensionality as 8 and the number of intents as
10 leads to satisfactory performance.

4.6.3 Impact of maximum sequence length T

TABLE 6: Performance with different maximum sequence
length T

T 10 20 30 40 50

Beauty HR@10 0.3401 0.3609 0.3608 0.3598 0.3594
NDCG@10 0.2128 0.2304 0.2303 0.2301 0.2296

T 10 50 100 200 300

ML-1m HR@10 0.5873 0.7108 0.7230 0.7363 0.7360
NDCG@10 0.3753 0.4890 0.5059 0.5189 0.5187

To verify the impact of the maximum sequence length
T , we consider the different settings that T is 10, 20, 30, 40,
50 for Beauty dataset, and T is 10, 50, 100, 200, 300 for ML-
1m dataset. Table 6 summarizes the performance of ISRec
with various T . We can observe that for Beauty dataset the
best performances are achieved on a small value T = 20,
because the average sequence length of Beauty is only 8.8
(shown in Table 3). However, ML-1m dataset prefers a larger
T = 200, because its average sequence is up to 163.5. This
indicates the proper maximum sequence length T is highly
dependent on the average sequence length of the dataset.
Although a larger T can consider more sequence information,
it will also introduce more noise. So the performances do
not consistently benefit from a larger T . As the T increases,
the performances of our method tend to be relatively stable,
showing that ISRec can focus on the useful informative items
and filter the noise from user interaction sequence.

5 CONCLUSIONS

In this paper, we study the intent-aware sequential rec-
ommendation problem with structured intent transition.
We propose an intention-aware sequential recommendation
(ISRec) method which is able to discover the user intentions
behind her behaviors history and model the structured user
intention transition patterns. Our proposed ISRec model
can make accurate sequential recommendations with more
transparent and explainable intermediate results for each
recommendation. Extensive experiments on various datasets
demonstrate the effectiveness of ISRec compared with other
state-of-the-art baselines and case studies show that we can
identify dynamic user intents accurately.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

ACKNOWLEDGMENT

This work was supported by the National Key Research
and Development Program of China (No. 2020AAA0106300,
2020AAA0107800, 2018AAA0102000). All opinions, findings
and conclusions in this paper are those of the authors and
do not necessarily reflect the views of the funding agencies.

REFERENCES

[1] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing
personalized markov chains for next-basket recommendation,” in
Proceedings of the 19th international conference on World wide web, 2010,
pp. 811–820.

[2] R. He, W.-C. Kang, and J. McAuley, “Translation-based recom-
mendation,” in Proceedings of the Eleventh ACM Conference on
Recommender Systems, 2017, pp. 161–169.

[3] R. He, C. Fang, Z. Wang, and J. McAuley, “Vista: a visually, socially,
and temporally-aware model for artistic recommendation,” in
Proceedings of the 10th ACM Conference on Recommender Systems,
2016, pp. 309–316.

[4] W.-C. Kang and J. McAuley, “Self-attentive sequential recommenda-
tion,” in 2018 IEEE International Conference on Data Mining (ICDM).
IEEE, 2018.

[5] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “Bert4rec:
Sequential recommendation with bidirectional encoder representa-
tions from transformer,” in Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, 2019, pp. 1441–
1450.

[6] J. Tang and K. Wang, “Personalized top-n sequential recommen-
dation via convolutional sequence embedding,” in Proceedings of
the Eleventh ACM International Conference on Web Search and Data
Mining, 2018, pp. 565–573.

[7] Q. Liu, S. Wu, D. Wang, Z. Li, and L. Wang, “Context-aware sequen-
tial recommendation,” in 2016 IEEE 16th International Conference on
Data Mining (ICDM). IEEE, 2016, pp. 1053–1058.

[8] P. Wang, J. Guo, Y. Lan, J. Xu, S. Wan, and X. Cheng, “Learning
hierarchical representation model for nextbasket recommendation,”
in Proceedings of the 38th International ACM SIGIR conference on
Research and Development in Information Retrieval, 2015, pp. 403–412.

[9] R. He and J. McAuley, “Fusing similarity models with markov
chains for sparse sequential recommendation,” in 2016 IEEE 16th
International Conference on Data Mining (ICDM). IEEE, 2016, pp.
191–200.

[10] C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing, “Recurrent
recommender networks,” in Proceedings of the tenth ACM interna-
tional conference on web search and data mining, 2017, pp. 495–503.

[11] Y. Koren, “Factorization meets the neighborhood: a multifaceted
collaborative filtering model,” in Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2008, pp. 426–434.

[12] G. Linden, B. Smith, and J. York, “Amazon. com recommendations:
Item-to-item collaborative filtering,” IEEE Internet computing, vol. 7,
no. 1, pp. 76–80, 2003.

[13] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep learning
for recommender systems,” in Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, 2015,
pp. 1235–1244.

[14] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara, “Variational
autoencoders for collaborative filtering,” in Proceedings of the 2018
World Wide Web Conference, 2018, pp. 689–698.

[15] X. Li and J. She, “Collaborative variational autoencoder for
recommender systems,” in Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining, 2017,
pp. 305–314.

[16] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“Grouplens: an open architecture for collaborative filtering of
netnews,” in Proceedings of the 1994 ACM conference on Computer
supported cooperative work, 1994, pp. 175–186.

[17] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based
collaborative filtering recommendation algorithms,” in Proceedings
of the 10th international conference on World Wide Web, 2001, pp.
285–295.

[18] Y. Cai, H.-f. Leung, Q. Li, H. Min, J. Tang, and J. Li, “Typicality-
based collaborative filtering recommendation,” IEEE Transactions
on Knowledge and Data Engineering, vol. 26, no. 3, pp. 766–779, 2013.

[19] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques
for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37,
2009.

[20] L. Baltrunas, B. Ludwig, and F. Ricci, “Matrix factorization tech-
niques for context aware recommendation,” in Proceedings of the
fifth ACM conference on Recommender systems, 2011, pp. 301–304.

[21] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based
recommendations with recurrent neural networks,” arXiv preprint
arXiv:1511.06939, 2015.

[22] B. Hidasi and A. Karatzoglou, “Recurrent neural networks with
top-k gains for session-based recommendations,” in Proceedings of
the 27th ACM International Conference on Information and Knowledge
Management, 2018, pp. 843–852.

[23] F. Yu, Q. Liu, S. Wu, L. Wang, and T. Tan, “A dynamic recurrent
model for next basket recommendation,” in Proceedings of the 39th
International ACM SIGIR conference on Research and Development in
Information Retrieval, 2016, pp. 729–732.

[24] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural attentive
session-based recommendation,” in Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management, 2017, pp.
1419–1428.

[25] N. Zhu, J. Cao, Y. Liu, Y. Yang, H. Ying, and H. Xiong, “Sequential
modeling of hierarchical user intention and preference for next-item
recommendation,” in Proceedings of the 13th International Conference
on Web Search and Data Mining, 2020, pp. 807–815.

[26] T. Chen, H. Yin, H. Chen, R. Yan, Q. V. H. Nguyen, and X. Li, “Air:
Attentional intention-aware recommender systems,” in 2019 IEEE
35th International Conference on Data Engineering (ICDE). IEEE,
2019, pp. 304–315.

[27] S. Wang, L. Hu, Y. Wang, Q. Z. Sheng, M. Orgun, and L. Cao,
“Intention2basket: A neural intention-driven approach for dynamic
next-basket planning.” IJCAI, 2020.

[28] X. Wang, H. Jin, A. Zhang, X. He, T. Xu, and T.-S. Chua, “Dis-
entangled graph collaborative filtering,” in Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2020, pp. 1001–1010.

[29] M. M. Tanjim, C. Su, E. Benjamin, D. Hu, L. Hong, and J. McAuley,
“Attentive sequential models of latent intent for next item recom-
mendation,” in Proceedings of The Web Conference 2020, 2020, pp.
2528–2534.

[30] T. Kipf, E. van der Pol, and M. Welling, “Contrastive learning of
structured world models,” arXiv preprint arXiv:1911.12247, 2019.

[31] T. Wang, R. Liao, J. Ba, and S. Fidler, “Nervenet: Learning structured
policy with graph neural networks,” 2018.

[32] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel, “Neu-
ral relational inference for interacting systems,” arXiv preprint
arXiv:1802.04687, 2018.

[33] J. Kossen, K. Stelzner, M. Hussing, C. Voelcker, and K. Kersting,
“Structured object-aware physics prediction for video modeling and
planning,” arXiv preprint arXiv:1910.02425, 2019.

[34] H. Wang, F. Zhang, J. Wang, M. Zhao, W. Li, X. Xie, and M. Guo,
“Ripplenet: Propagating user preferences on the knowledge graph
for recommender systems,” in Proceedings of the 27th ACM Interna-
tional Conference on Information and Knowledge Management. ACM,
2018, pp. 417–426.

[35] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “Kgat: Knowledge
graph attention network for recommendation,” arXiv preprint
arXiv:1905.07854, 2019.

[36] C. Zhang, K. Wang, H. Yu, J. Sun, and E.-P. Lim, “Latent factor
transition for dynamic collaborative filtering,” in Proceedings of the
2014 SIAM International Conference on Data Mining. SIAM, 2014,
pp. 452–460.

[37] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in International
Conference on Machine Learning, 2017, pp. 1263–1272.

[38] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” arXiv preprint arXiv:1609.02907,
2016.

[39] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, “Image-
based recommendations on styles and substitutes,” in Proceedings
of the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2015, pp. 43–52.

[40] T. Zhao, J. McAuley, and I. King, “Leveraging social connections
to improve personalized ranking for collaborative filtering,” in
Proceedings of the 23rd ACM international conference on conference on
information and knowledge management, 2014, pp. 261–270.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[41] F. M. Harper and J. A. Konstan, “The movielens datasets: History
and context,” Acm transactions on interactive intelligent systems (tiis),
2015.

[42] R. Speer and C. Havasi, “Conceptnet 5: A large semantic network
for relational knowledge,” in The People’s Web Meets NLP. Springer,
2013.

[43] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in Proceedings of the 26th international
conference on world wide web, 2017, pp. 173–182.

[44] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme,
“Bpr: Bayesian personalized ranking from implicit feedback,” arXiv
preprint arXiv:1205.2618, 2012.

[45] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[46] S. Rendle, “Evaluation metrics for item recommendation under
sampling,” arXiv preprint arXiv:1912.02263, 2019.

Haoyang Li received his B.E. from the Depart-
ment of Computer Science and Technology, Ts-
inghua University in 2018. He is a Ph.D. can-
didate in the Department of Computer Science
and Technology of Tsinghua University. His main
research interests focus on machine learning on
graph-structured data, which has broad applica-
tions, ranging from social network analysis to
recommender systems. He has published several
papers in prestigious conferences, e.g., KDD and
ICDM.

Xin Wang is currently an Assistant Professor
at the Department of Computer Science and
Technology, Tsinghua University. He got both of
his Ph.D. and B.E degrees in Computer Science
and Technology from Zhejiang University, China.
He also holds a Ph.D. degree in Computing
Science from Simon Fraser University, Canada.
His research interests include cross-modal mul-
timedia intelligence and inferable recommenda-
tion in social media. He has published several
high-quality research papers in top conferences

including ICML, MM, KDD, WWW, SIGIR etc. He is the recipient of 2017
China Postdoctoral innovative talents supporting program. He receives
the ACM China Rising Star Award in 2020.

Ziwei Zhang received his B.S. from the Depart-
ment of Physics, Tsinghua University in 2016. He
is currently pursuing a Ph.D. Degree in the De-
partment of Computer Science and Technology at
Tsinghua University. His research interests focus
on network embedding and machine learning
on graph data, especially in developing scalable
algorithms for large-scale networks. He has pub-
lished several papers in prestigious conferences
and journals, including KDD, AAAI, IJCAI, and
TKDE.

Jianxin Ma received his B.E. and master’s de-
gree from the Department of Computer Science
and Technology, Tsinghua University in 2017
and 2020, respectively, under the supervision of
Wenwu Zhu and Peng Cui. His research interests
are mainly in machine learning, in particular
representation learning, on relational data such
as graph data and user behavior data from rec-
ommender systems. He has published several
papers at prestigious conferences such as KDD,
AAAI, ICML, and NeurIPS. He is now doing

applied research at DAMO academy, Alibaba Inc.

Peng Cui received the Ph.D. degree from Ts-
inghua University in 2010. He is currently an asso-
ciate professor with tenure at Tsinghua University.
His research interests include network repre-
sentation learning, human behavioral modeling,
and social-sensed multimedia computing. He has
published more than 100 papers in prestigious
conferences and journals in data mining and mul-
timedia. His recent research efforts have received
the SIGKDD 2016 Best Paper Finalist, the ICDM
2015 Best Student Paper Award, the SIGKDD

2014 Best Paper Finalist, the IEEE ICME 2014 Best Paper Award,
the ACM MM12 Grand Challenge Multimodal Award, and the MMM13
Best Paper Award. He is an associate editor of IEEE Transactions on
Knowledge and Data Engineering, the IEEE Transactions on Big Data,
the ACM Transactions on Multimedia Computing, Communications, and
Applications, the Elsevier Journal on Neurocomputing, etc. He was the
recipient of the ACM China Rising Star Award in 2015.

Wenwu Zhu is currently a Professor and Deputy
Head of the Computer Science Department of
Tsinghua University and Vice Dean of National
Research Center on Information Science and
Technology. Prior to his current post, he was
a Senior Researcher and Research Manager
at Microsoft Research Asia. He was the Chief
Scientist and Director at Intel Research China
from 2004 to 2008. He worked at Bell Labs New
Jersey as a Member of Technical Staff during
1996-1999. He received his Ph.D. degree from

New York University in 1996.
He served as the Editor-in-Chief for the IEEE Transactions on Multime-

dia (T-MM) from January 1, 2017, to December 31, 2019. He has been
serving as Vice EiC for IEEE Transactions on Circuits and Systems for
Video Technology (TCSVT) and the chair of the steering committee for
IEEE T-MM since January 1, 2020. His current research interests are
in the areas of multimedia computing and networking, and big data. He
has published over 400 papers in the referred journals and received nine
Best Paper Awards including IEEE TCSVT in 2001 and 2019, and ACM
Multimedia 2012. He is an IEEE Fellow, AAAS Fellow, SPIE Fellow and a
member of the European Academy of Sciences (Academia Europaea).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

APPENDIX A
TRAINING PROCEDURE

In this section, we list the training procedure of our method.

Algorithm 1 The training procedure of Intention-Aware
Sequential Recommendation (ISRec).
Input: User interaction sequence [v1, v2, . . . , vt]

1: function ENCODER([v1, v2, . . . , vt])
2: Calculate hi for each item vi by Eq. (1)
3: Concat hi to get representation H0 by Eq. (2)
4: Calculate sequence representation xt by transformer

return xt

5: function INTENTEXTRACTION(xt)
6: st,k = xt · ck/(‖xt‖2 ‖ck‖2), k = 1, 2, . . . ,K
7: mt ∼ Categorical(Softmax(st,1, st,2, ..., st,K))

. Estimated using Gumbel-Softmax [45].
8: zt,k = mt,kMLPk(xt)

return mt,Zt

9: function INTENTTRANSITION(mt,Zt)
10: Zt+1 = F(Zt,A) . F(·) is the transition function.
11: mt+1,k = 1 if and only if ‖zt+1,k‖2 ≥

g({‖zt+1,k‖2 , 1 ≤ k ≤ K}) . g is an operator that
outputs the λ-th largest value of the input.

return mt+1,Zt+1

12: function DECODER(mt+1,Zt+1)
13: xt+1 =

∑K
k=1mt+1,kMLP′k(zt+1,k)

14: Calculate p(vt+1|[v1, v2, ..., vt]) by Eq. (12)
return p(vt+1|[v1, v2, ..., vt])

15: xt ← ENCODER([v1, v2, . . . , vt])
16: mt,Zt ← INTENTEXTRACTION(xt)
17: mt+1,Zt+1 ← INTENTTRANSITION(mt,Zt)
18: p(vt+1|[v1, v2, ..., vt])← DECODER(mt+1,Zt+1)
19: Calculate objective function L by Eq. (13), (14)
20: Θ← Update Θ to minimize L, using the gradient ∇ΘL

APPENDIX B
IMPLEMENTATION NOTES

B.1 Infrastructure
We conduct the experiments with:

• Operating System: Ubuntu 18.04.1 LTS
• CPU: Intel(R) Xeon(R) CPU E5-2699 v4@2.20GHz
• GPU: NVIDIA GeForce GTX TITAN X
• Software: Python 3.6.5; NumPy 1.18.0; Tensorflow

1.12.0

B.2 Parameter Settings
We implement ISRec using TensorFlow8. We adopt the Adam
optimizer, which is a variant of Stochastic Gradient Descent
(SGD) with adaptive moment estimation. The learning rate
is set to 0.001 and the batch size is 256. We use the Xavier
initializer to initialize the model parameters. The dropout
rate of turning off neurons is 0.2 for MovieLens and 0.5 for
the other datasets. The maximum sequence length T is fixed
to 50 for Beauty, Steam, and Epinions dataset, and 200 for
MovieLens. The number of activated concepts λ is 10.

8https://www.tensorflow.org/

For a fair comparison, we use code provided by the
corresponding authors for NCF9, GRU4Rec10, GRU4Rec+10,
DGCF11, Caser12, SASRec13, and BERT4Rec14. And we imple-
ment BPR-MF and FPMC using TensorFlow. For common
hyperparameters in all models, we consider the hidden
dimension size d from {16, 32, 64, 128, 256} and the `2
regularizer is chosen from {0.0001, 0.001, 0.01, 0.1, 1}. All
other hyperparameters and initialization strategies are either
followed the advice from the methods’ authors or tuned on
the validation sets. The reported results of each baseline are
under the optimal hyperparameter settings. For BERT4Rec,
the maximum sequence length T is 50 for Beauty, Steam,
and Epinions datasets, and 200 for MovieLens. The mask
proportion ρ is 0.6 for Beauty and Epinions, 0.4 for Steam,
and 0.2 for MovieLens. The Transformer layer number is 2
and the head number is 2. The batch size is 256. For SASRec,
it has the same setting with BERT4Rec for the maximum
sequence length T . The number of self-attention block is 2.
The batch size is 128. For Caser, the Markov order is 5 and
the target number is 3. The number of the horizontal and
vertical filter is 16 and 4 respectively. The batch size is 100.
For DGCF, the intent number is fixed to 4, the model depth is
set to 1, and the number of iterations to perform the routing
mechanism is 2. The batch size is 128.

APPENDIX C
TRAINING EFFICIENCY
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Fig. 5: Training Efficiency on Beauty.

Recommenders are expected to be efficient, so we conduct
the experiment of the training time comparison as shown in
Fig. 5. We take the metric of NDCG@10 on Beauty dataset for
example, while the results using other metrics and datasets
show a similar pattern. We can see that ISRec is faster
than all the other baselines with regard to the training time.
BERT4Rec costs very long training time (> 7000s) to converge.

9https://github.com/hexiangnan/neural_collaborative_filtering
10https://github.com/hidasib/GRU4Rec
11https://github.com/xiangwang1223/disentangled_graph_

collaborative_filtering
12https://github.com/graytowne/caser_pytorch
13https://github.com/kang205/SASRec
14https://github.com/FeiSun/BERT4Rec

https://github.com/hexiangnan/neural_collaborative_filtering
https://github.com/hidasib/GRU4Rec
https://github.com/xiangwang1223/disentangled_graph_collaborative_filtering
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https://github.com/graytowne/caser_pytorch
https://github.com/kang205/SASRec
https://github.com/FeiSun/BERT4Rec
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SASRec has similar training efficiency with ISRec but its
performance is obviously worse than ours. In summary,
ISRec is more efficient than baselines as well as achieving
better performance.

APPENDIX D
PERFORMANCE COMPARISON ON AUC METRIC.

Pop
Rec

BPR-M
F
NCF

FPMC

GRU4R
ec

GRU4R
ec

+
DGCF

Cas
er

SASRec

BERT4R
ec

IS
Rec

 (o
urs

)

Method

0.50

0.55

0.60

0.65

0.70

0.75

A
U

C

.5201

.5434 .5467 .5534

.5867
.6012

.6115 .6041
.5893

.6081

.7058

Beauty

Pop
Rec

BPR-M
F
NCF

FPMC

GRU4R
ec

GRU4R
ec

+
DGCF

Cas
er

SASRec

BERT4R
ec

IS
Rec

 (o
urs

)

Method

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
U

C

.5111
.5311

.5763 .5835
.6133

.6263

.6644
.6806

.7325 .7423

.8108

Steam

Pop
Rec

BPR-M
F
NCF

FPMC

GRU4R
ec

GRU4R
ec

+
DGCF

Cas
er

SASRec

BERT4R
ec

IS
Rec

 (o
urs

)

Method

0.50

0.52

0.54

0.56

A
U

C

.5120

.5208 .5213 .5211

.5301
.5346

.5375 .5367

.5309
.5358

.5477

Epinions

Pop
Rec

BPR-M
F
NCF

FPMC

GRU4R
ec

GRU4R
ec

+
DGCF

Cas
er

SASRec

BERT4R
ec

IS
Rec

 (o
urs

)

Method

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

A
U

C

.5251

.7411 .7349
.7556

.8311 .8465 .8592 .8469
.8725 .8812 .8975

ML-1m

Pop
Rec

BPR-M
F
NCF

FPMC

GRU4R
ec

GRU4R
ec

+
DGCF

Cas
er

SASRec

BERT4R
ec

IS
Rec

 (o
urs

)

Method

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

A
U

C

.5329

.7213
.7009

.7211

.7780

.8366 .8218
.8393

.8884 .8827
.9234

ML-20m

Fig. 6: Performance comparison of ISRec and baselines on
the AUC metric.

As pointed in [46], most of the evaluation metrics could be
biased if sampling is used, except for the Area Under Curve
(AUC) metric, namely AUC is consistent across different
sampling sizes. So we add the performance comparison on
the AUC metric to make results more reliable. Fig. 6 shows
that our ISRec also achieves the best performance on all
datasets with respect to the AUC metric.
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