

Disentangled Contrastive Learning on Graphs

Haoyang Li¹, Xin Wang¹, Ziwei Zhang¹, Zehuan Yuan², Hang Li², Wenwu Zhu¹

¹Tsinghua University, ²ByteDance

Graph Structured Data is Ubiquitous

Social Network

Knowledge Graph

Traffic Network

Internet of Things

Information Network

Biology Network

Graph Neural Networks

• GNNs generally adopt a neighborhood aggregation paradigm.

 Most famous GNNs are trained end-to-end with task-specific labels, which could be extremely scarce for some graph datasets.

Self-supervised Learning on Graphs

Graph Contrastive Learning

Disentangled Graph Contrastive Learning

• The formation of a graph is typically driven by *many latent factors*.

• Existing methods characterize graphs as a perceptual whole.

- The learned representations contain a mixture of entangled factors.
- They may lead to suboptimal performance and harm the explainability.

Model Framework

Experimental Results

Graph classification performance

	MUTAG	PTC-MR	PROTEINS	NCI1	IMDB-B	IMDB-M	RDT-B	RDT-M5K	COLLAB
SP	$85.2{\pm}2.4$	58.2 ± 2.4	$75.1 {\pm} 0.5$	$73.0{\pm}0.2$	$55.6 {\pm} 0.2$	$38.0 {\pm} 0.3$	64.1±0.1	39.6±0.2	-
GK	81.7 ± 2.1	57.3 ± 1.4	$71.7 {\pm} 0.6$	62.3 ± 0.3	65.9 ± 1.0	$43.9 {\pm} 0.4$	77.3 ± 0.2	41.0 ± 0.2	$72.8 {\pm} 0.3$
WL	80.7 ± 3.0	$58.0{\pm}0.5$	$72.9 {\pm} 0.6$	$80.0 {\pm} 0.5$	72.3 ± 3.4	47.0 ± 0.5	$68.8 {\pm} 0.4$	46.1 ± 0.2	_
DGK	87.4 ± 2.7	60.1 ± 2.6	$73.3 {\pm} 0.8$	$80.3 {\pm} 0.5$	67.0 ± 0.6	44.6 ± 0.5	$78.0 {\pm} 0.4$	41.3 ± 0.2	73.1 ± 0.3
MLG	87.9±1.6	63.3 ± 1.5	76.1 ± 2.0	80.8 ± 1.3	66.6 ± 0.3	41.2 ± 0.0	-	-	_
node2vec	$72.6 {\pm} 10.2$	$58.6{\pm}8.0$	57.5±3.6	54.9 ± 1.6	_	-	-	-	_
sub2vec	61.1 ± 15.8	60.0 ± 6.4	53.0 ± 5.6	52.8 ± 1.5	55.3 ± 1.5	36.7 ± 0.8	71.5 ± 0.4	36.7 ± 0.4	_
graph2vec	83.2±9.3	$60.2 {\pm} 6.9$	73.3 ± 2.1	73.2 ± 1.8	71.1 ± 0.5	50.4 ± 0.9	$75.8 {\pm} 1.0$	47.9 ± 0.3	_
GVAE	$87.7 {\pm} 0.7$	61.2 ± 1.8	-	_	70.7 ± 0.7	49.3 ± 0.4	87.1 ± 0.1	$52.8 {\pm} 0.2$	_
InfoGraph	89.0 ± 1.1	61.7 ± 1.4	74.4 ± 0.3	76.2 ± 1.1	73.0 ± 0.9	49.7 ± 0.5	82.5 ± 1.4	53.5 ± 1.0	70.7 ± 1.1
GCC	-				72.0	49.4	89.8	53.7	78.9
MVGRL	89.7 ± 1.1	62.5 ± 1.7	-	-	74.2 ± 0.7	51.2 ± 0.5	84.5 ± 0.6		_
GraphCL	$\overline{86.8 \pm 1.3}$	63.6 ± 1.8	$74.4 {\pm} 0.5$	77.9 ± 0.4	71.1 ± 0.4	50.7 ± 0.4	$89.5{\pm}0.8$	56.0 ± 0.3	71.4 ± 1.2
DGCL	92.1±0.8	65.8±1.5	76.4±0.5	81.9±0.2	75.9±0.7	51.9±0.4	91.8±0.2	56.1±0.2	81.2±0.3

semi-supervised setting

unsupervised setting

Experimental Results

Feature correlation analysis

Conclusions

- This paper proposes a disentangled graph contrastive learning method.
- This paper proposes a disentangled graph encoder and factorwise contrastive learning approach.
- Extensive experiments demonstrate the superiority of the method.

Thanks!

Haoyang Li, Tsinghua University lihy18@mails.tsinghua.edu.cn

Disentangled Contrastive Learning on Graphs