
Billion-scale Network Embedding

with Iterative Random Projection

Ziwei Zhang Peng Cui Haoyang Li Xiao Wang Wenwu Zhu

Tsinghua U Tsinghua U Tsinghua U Tsinghua U Tsinghua U

2

Network Data is Ubiquitous

Social Network Biology Network

Traffic Network

3

Network Embedding:
Vector Representation of Nodes

Generate

Embed

 Apply feature-based machine

learning algorithms

 Fast computing of nodes similarity

 Support parallel computing

 Applications: link prediction,

node classification, community

detection, centrality measure,

anomaly detection ...

4

Challenge: Billion-scale Network Data

Social Networks

 WeChat: 1 billion monthly active users (March,

2018)

 Facebook: 2 billion active users (2017)

E-commerce Networks

 Amazon: 353 million products, 310 million users, 5

billion orders (2017)

Citation Networks

 130 million authors, 233 million publications, 754

million citations (Aminer, 2018)

How to conduct network embedding for

such large-scale network data？

5

Bottleneck of Existing Methods
 Methods based on random-walks

 DeepWalk, B. Perozzi, et al. KDD 2014.

 LINE, J. Tang, et al. WWW 2015.

 Node2vec, A. Grover, et al. KDD 2016.

 Methods based on matrix factorization

 M-NMF, X. Wang, et al. AAAI 2017.

 AROPE, Z. Zhang, et al. KDD 2018.

 Methods based on deep learning

 SDNE, D. Wang, et al. KDD 2016.

 DVNE, D. Zhu, et al. KDD 2018.

 Common bottleneck: based on sophisticated optimization

 Computationally expansive

 Hard to resort to distributed computing scheme

 Optimization is entangled and needs global information

→ Communication cost is high

 Only handle thousands or millions of nodes and edges

 Network embedding: essentially a dimension reduction problem

 Random projection: optimization-free for dimension reduction

 Basic idea: randomly project data into a low-dimensional subspace

 Extremely efficient and friendly to distributed computing

6

Random Projection

 Key network property: high-order proximity

 Can solve the network sparsity problem

 Measure indirect relationship between nodes

→ How to design a high-order proximity preserved random projection?

7

High-Order Proximity

Target Node

First-order

Second-order

Third-order

…

8

Problem Formulation
 Objective function: matrix factorization of preserving high-order proximity

min
𝑈,𝑉

𝑆 − 𝑈𝑉𝑇 𝑝
2

𝑆 = 𝑓 𝐴 = 𝛼1𝐴
1 + 𝛼2𝐴

2 +⋯+ 𝛼𝑞𝐴
𝑞

 Slight modification: assuming positive semi-definite and using 2 norm

min
𝑈

𝑆𝑆𝑇 − 𝑈𝑈𝑇
2

𝑆 = 𝑓 𝐴 = 𝛼1𝐴
1 + 𝛼2𝐴

2 +⋯+ 𝛼𝑞𝐴
𝑞

 Random projection:

 Denote 𝑅 ∈ ℝ𝑁×𝑑 as a Gaussian random matrix

𝑅𝑖𝑗~𝒩 0,
1

𝑑

 Surprisingly simple result:

𝑈 = 𝑆𝑅

9

Theoretical Guarantee

 Theoretical guarantee

 Basically, random projection can effectively minimize the objective function

 However, calculating 𝑆 is still very time consuming

10

Iterative Projection
 Iterative projection:

𝑈 = 𝑆𝑅 = 𝛼1𝐴
1 + 𝛼2𝐴

2 +⋯+ 𝛼𝑞𝐴
𝑞 𝑅

= 𝛼1𝐴
1𝑅 + 𝛼2𝐴

2𝑅 +⋯+ 𝛼𝑞𝐴
𝑞𝑅

 Can be calculated iteratively

 Why efficient?

 𝐴: 𝑁 ×𝑁 sparse adjacency matrix

 𝑅: 𝑁 × 𝑑 low-dimensional matrix

 Associative law of matrix multiplication

𝐴𝐴…𝐴𝐴𝐴𝑅

× A × A × A

𝐴𝐴…𝐴𝐴 𝐴𝑅

𝐴𝐴…𝐴 𝐴𝐴𝑅

Sparse

Low-dimensional

Sparse

Low-dimensional

Sparse

Low-dimensional

Sparse matrix multiplication!

11

Iterative Projection

A1 A2 Aq
× A × A × A…

× R

𝑈1
× A

𝑈2 𝑈𝑞
× A × A…

× R

Time Consuming!

Efficient!

12

RandNE: Iterative Random projection
Network Embedding

 Time Complexity: 𝑂 𝑞𝑀𝑑 + 𝑁𝑑2

 𝑁/𝑀: number of nodes/edges; 𝑑: dimension; 𝑞: order

 Linear w.r.t. network size

 Only need to calculate q sparse matrix products

 Orders of magnitude faster than existing methods!

 Advantages:

 Distributed Calculation

 Dynamic Updating

13

Distributed Calculation

 Iterative random projection only involves matrix product 𝑈𝑖 = 𝐴𝑈𝑖−1

 Each dimension can be calculated separately

 Property of sparse matrix product

 No communication is needed during calculation!

𝑈 ∈ ℝ𝑁×𝑑

14

Dynamic Updating
 Networks are dynamic in nature

 E.g., in social networks, users add/delete friends, new users join, old users leave

 Changes of edges → Calculate incremental parts!

𝑈𝑖 + Δ𝑈𝑖 = 𝐴 + Δ𝐴 ⋅ (𝑈𝑖−1+Δ𝑈𝑖−1)

→ Δ𝑈𝑖 = 𝐴 ⋅ Δ𝑈𝑖−1 + Δ𝐴 ⋅ 𝑈𝑖−1 + Δ𝐴 ⋅ Δ𝑈𝑖−1

 Changes of nodes → adjust the dimensionality

Time
T T+1

15

Dynamic Updating

 Linear scalability w.r.t. number of changed nodes/edges

 No error accumulation

 Identical results as re-running the algorithm

16

Experimental Setting: Moderate-scale Networks

 Datasets: BlogCatalog, Flickr, YouTube

 Baselines:

 DeepWalk (KDD 2014): DFS random walk + skip-gram

 LINE (WWW 2015): BFS random walk + skip-gram

 Node2vec (KDD 2016): biased random walk + skip-gram

 SDNE (KDD 2016): deep auto-encoder

17

Experimental Results
 Running time

At least dozens of times faster

20

Experimental Results
 Node Classification

22

Experimental Results
 Parameter analysis:

 Effectiveness of preserving high-order proximity

 Scalability

<4 minutes for network with 1 million nodes, 100 million edges with one PC

23

Experiments on a Billion-scale Network
 Experimental results on WeChat

 250 millions nodes, 4.8 billion edges

 Network Reconstruction

 Dynamic link prediction

Better results and no error accumulation!

24

Experimental Results
 Running time and acceleration ratio

 Practical running time for real billion-scale networks

Number of Computing Nodes 4 8 12 16

Running Time(s) 82157 46029 33965 24757

<7 hours!

Support distributed computing

25

Conclusion
 RandNE: a billion-scale network embedding method

 Based on iterative random projection to preserve high-order proximities

 Much more computationally efficient

 Distributed algorithm

 Handle dynamic networks

 Experimental results on moderate-scale networks

 At least one order of magnitude faster

 Better or comparable performance

 Linear scalability

 Experiments on WeChat, a real billion-scale network

 Better results in network reconstruction and link prediction

 No error accumulation

 Linear acceleration ratio

26

Thanks!
Ziwei Zhang, Tsinghua University

zw-zhang16@mails.tsinghua.edu.cn

http://zw-zhang.github.io/

http://nrl.thumedialab.com/

