E———— T
NPT m IEEE ICDM 2018

Tsinghua University media and network

Billion-scale Network Embedding
with Iterative Random Projection

Ziwei Zhang Peng Cui Haoyang Li Xiao Wang Wenwu Zhu
Tsinghua U Tsinghua U Tsinghua U Tsinghua U Tsinghua U

X
5 S
E Z
m zZ
7, O
S = T
S S 2
= m
=3
o)
D
2
©
e
©
)
=
O B
< 2
i Q
()] Z
Z [
(@)
o
V)

Network Embedding:
Vector Representation of Nodes

Generate

O Apply feature-based machine
learning algorithms

O Fast computing of nodes similarity

O Support parallel computing

A

O Applications: link prediction,
node classification, community
detection, centrality measure,
anomaly detection ...

n
>

Challenge: Billion-scale Network Data

Social Networks

0 WeChat: 1 billion monthly active users (March,
2018)

0 Facebook: 2 billion active users (2017)
E-commerce Networks

0 Amazon: 353 million products, 310 million users, 5
billion orders (2017)

Citation Networks

1 130 million authors, 233 million publications, 754
million citations (Aminer, 2018)

How to conduct network embedding for

such large-scale network data?

Bottleneck of Existing Methods

O Methods based on random-walks
O DeepWalk, B. Perozzi, et al. KDD 2014.
O LINE, J. Tang, et al. WWW 2015.
O Node2vec, A. Grover, et al. KDD 2016.

0 Methods based on matrix factorization
O M-NMF, X. Wang, et al. AAAI 2017.
O AROPE, Z. Zhang, et al. KDD 2018.

O Methods based on deep learning
O SDNE, D. Wang, et al. KDD 2016.
O DVNE, D. Zhu, et al. KDD 2018.

O Common bottleneck: based on sophisticated optimization
O Computationally expansive
O Hard to resort to distributed computing scheme
O Optimization is entangled and needs global information
— Communication cost is high
O Only handle thousands or millions of nodes and edges

Random Projection
O Network embedding: essentially a dimension reduction problem

T T T T T
= .
—=0.6F .‘
/\
/o 6 = »
/A
/ \ _—
(\l/ _—@ g
)
/

-08 @ga ® °®

—L.0f ® o ’ [J
—-1.2} ..
_1a}
—1.6F

—1.8f

-1.0 -0.5 0.0 0.5 1.0 15 2.0 2.5

O Random projection: optimization-free for dimension reduction
O Basic idea: randomly project data into a low-dimensional subspace
O Extremely efficient and friendly to distributed computing

High-Order Proximity

O Key network property: high-order proximity

Target Node
First-order
Second-order
Third-order

© O OO0

O Can solve the network sparsity problem
O Measure indirect relationship between nodes
— How to design a high-order proximity preserved random projection?

Problem Formulation
O Objective function: matrix factorization of preserving high-order proximity
r(rjl}lnIIS —UvT|l3
S=f(4) = ;A" + a0 A% + - 4 a AT
O Slight modification: assuming positive semi-definite and using 2 norm
rrlljinIISST — UU"l;
S=f(A) = A" + a0, A% + - + a A9
O Random projection:
O Denote R € RV*? as a Gaussian random matrix

1
Ry~ (0.~

O Surprisingly simple result:
U=SR

Theoretical Guarantee

O Theoretical guarantee

Theorem 1. For any similarity matrix S, denote its rank as
rs. Then, for any € € (O, %), the following equation holds:

A I L

where U = S - R and R is a Gaussian random matrix.

O Basically, random projection can effectively minimize the objective function

O However, calculating S is still very time consuming

Iterative Projection

O Iterative projection:
U=SR=(a;A" + a3A% + -+ a;A7)R

=« Alf% + aqgcm

XA XA XA
O Can be calculated iteratively

O Why efficient?
O A: N X N sparse adjacency matrix
O R: N x d low-dimensional matrix

O Associative law of matrix multiplication

Sparse
AA ...A «— Low-dimensional
— Sparse
Sparse matrix multiplication! AA ... AA(AR) Low-dimensional
Sparse

AA ...[A(AAR)|+~— Low-dimensional

Iterative Projection

Time Consuming!

X A X A X A

A1 —_— AZ —_— - _ Aq

X R X R

X A X A X A

RandNE: Iterative Random projection
Network Embedding

Algorithm 1 RandNE: Iterative Random Projection Network
Embedding
Require: Adjacency Matrix A, Dimensionality d, Order g,
Weights ag, aq, ..., ay
Ensure: Embedding Results U
I: Generate R € RV*? ~ A(0, 1)
2: Perform a Gram Schmidt process on R to obtain the
orthogonal projection matrix Up
for i in 1:q do
Calculate U; = A -U,_;
end for
Calculate U = agUp + a1 Uy + ... + o, U,

O Time Complexity: 0(gMd + Nd?)

O N/M:number of nodes/edges; d: dimension; g: order

O Linear w.r.t. network size

O Only need to calculate g sparse matrix products

O Orders of magnitude faster than existing methods!

O Advantages:

O Distributed Calculation

O Dynamic Updating

Distributed Calculation

O Iterative random projection only involves matrix product U; = AU;_4
O Each dimension can be calculated separately
O Property of sparse matrix product

O No communication is needed during calculation!

T Algorithm 2 Distributed Calculation of RandNE
E Require: Adjacency matrix A, Initial Projection U, Para-
meters of RandNE, K Distributed Servers
/ Ensure: Embedding Results U
: Broadcast A, Ug and parameters into K servers
Seti=1
: repeat
if There is an idle server k£ then

2
3
4
5 Calculate U(4,:) in server k
\ 6 i=i+l
.
8
9

[u—

)
_

/

5

_______________________T____ S
| g)

/

Gather U(4,:) from server k after calculation
end if
cuntil ¢ > d
10: Return U

Dynamic Updating

O Networks are dynamic in nature

O E.g., in social networks, users add/delete friends, new users join, old users leave

@ v s
ab

Uy

@

Time
T T+1
O Changes of edges — Calculate incremental parts!

Ui + AUl — (A + AA) : (Ui_1+AUi_1)
— AU; =A-AU;_{ +AA-U;_;{ + A - AU;_,4

O Changes of nhodes — adjust the dimensionality

Dynamic Updating

Algorithm 3 Dynamic Updating of RandNE
Require: Adjacency Matrix A, Dynamic Changes AA, Pre-
vious Projection Results Ug, U;..... U,
Ensure: Updated Projection Results U, U7, ..., U
1: if AA includes N’ new nodes then

2: Generate an orthogonal projection U, € RN'*d
3: Concatenate ﬁo with Up to obtain Uj,

4 Add N’ all-zero rows in U;...U,

5. end if

6: Set AUy =0

7: for i in 1:q do

8: Calculate AU; using Eq. (7)

0. Calculate U] = U; + AU;

10: end for

O Linear scalability w.r.t. number of changed nodes/edges

Theorem 3. The time complexity of dynamic updating is li-
near with the number of changed nodes and number of chan-
ged edges respectively.
O No error accumulation
O Identical results as re-running the algorithm

Experimental Setting: Moderate-scale Networks
O Datasets: BlogCatalog, Flickr, YouTube

TABLE 1
THE STATISTICS OF DATASETS
Dataset # Nodes # Edges # Labels
BlogCatalog 10,312 667,966 39
Flickr 80,513 11,799,764 47
Youtube 1,138,499 5,980,886 195
O Baselines:

O DeepWalk (KDD 2014): DFS random walk + skip-gram
O LINE (WWW 2015): BFS random walk + skip-gram

O Node2vec (KDD 2016): biased random walk + skip-gram
O SDNE (KDD 2016): deep auto-encoder

O Running time

Experimental Results

1e+06- o

1e+05-
@
o 1e+041
£
= 1e+03
&
" 1e+021 27X
£ Izsx
C 1e+01+

24X
1e+00+
BIogC'atang Flickr Youtube
Dataset

At least dozens of times faster

=@= RandNE
DeepWalk
mafhe= | INE

Node2vec

migi= SDNE

0.301

Macro—F1 Scores

0.15-

Micro-F1 Scores

Experimental Results

0 Node Classification

BlogCatalog

0.251

0.20+

0.24

0.201

0.16+

0.341

0.32

0.301

0.28

T : : : — 0.08
0.1 0.3 0.5 0.7 0.9

Percentage of Nodes for Training
BlogCatalog

=
=~
e

o
w
a

o
w
o

\
!

0

0.350+

0.3251

0.3001

0.2751

01 003 005 007 0.09
Percentage of Nodes for Training

Flickr

001 003 005 0.07 0.09

Percentage of Nodes for Training

\ \
4

0.40

0.38

0.367

0.34

Youtube
,;/‘

R

€}

01 03 05 07 09
Percentage of Nodes for Training

0.01 003 005 007 009
Percentage of Nodes for Training

0.01 003 005 007 0.09
Percentage of Nodes for Training

=@ RandNE
DeepWalk

e |INE1

== | INE2
Node2vec

=g SDNE

== RandNE
DeepWalk

e LINEA

e | INE2
Mode2vec

migi SDNE

Experimental Results
O Parameter analysis:

O Effectiveness of preserving high-order proximity

AUC of Link Prediction Structural Classification on American Flights
0.91
0.554
0.8 >
&}
Q € 0.5 i
207/ 3 B -2
< o
0.6 0.351
0.51 0.254
BlogCatalog Flickr Youtube 10% 50% 90%
. Datasets Nodes used for Training
O Scalability
— == Number of Nodes = 1e6 —_ == Number of Edges = 1e7
£ 2001 L 351
o ()
E £
= =
150+
o
< 2 25
c c
c c
> 100+ =]
s o
15+

26107 4e+07 6e+07 8e+07 1e+08 5605

4e+05 Be+05 8e+05 1e+06
Number of Edges

Number of Nodes

<4 minutes for network with 1 million nodes, 100 million edges with one PC

Experiments on a Billion-scale Network

O Experimental results on WeChat
O 250 millions nodes, 4.8 billion edges
O Network Reconstruction

Method AUC
RandNE 0.989
Common Neighbors | 0.783
Adamic Adar 0.783
Random 0.500

O Dynamic link prediction
Table 3: AUC scores of dynamic link prediction on WeChat.

Observed Edges 30% 40% 50% 60% 10%
RandNE-D 0.646 0.689 0.726 0.756 0.780
RandNE-R 0.646 0.689 0.726 0.756 0.780

Common Neighbors 0.575 0.611 0.647 0.681 0.712
Adamic Adar 0.575 0.611 0.647 0.681 0.712
Random 0.500 0.500 0.500 0.500 0.500

Better results and no error accumulation!

Experimental Results

O Running time and acceleration ratio

Table 4: The running time of our method via distributed computing.

Number of Computing Nodes 4 8 12 16
Running Time(s) 82157 | 46029 | 33965 | 24757
<7 hours!

O Practical running time for real billion-scale networks

0
! w
;o o

o .

Speedup Rati
e S
o

o

1 2 3 4
Number of Sub—clusters

Support distributed computing

Conclusion

O RandNE: a billion-scale network embedding method
O Based on iterative random projection to preserve high-order proximities
O Much more computationally efficient
O Distributed algorithm
O Handle dynamic networks
O Experimental results on moderate-scale networks
O At least one order of magnitude faster
O Better or comparable performance
O Linear scalability
O Experiments on WeChat, a real billion-scale network
O Better results in network reconstruction and link prediction
O No error accumulation
O Linear acceleration ratio

[
el
3=
=
> o
N~ >
(aV]
>
(s 0] @
9V Fw
— 28
U
(]
> [=3]
<t =]
YRYE
L@
Q
v v v (=2}
© Te} <t (] o - o pel
¢ 2 ¢ 8 & 20D
+
[[] [[[(]

(syowi) Buuuny

M, | O
/ 7] N

Thanks!

SR, Y
. v,

