
Billion-scale Network Embedding

with Iterative Random Projection

Ziwei Zhang Peng Cui Haoyang Li Xiao Wang Wenwu Zhu

Tsinghua U Tsinghua U Tsinghua U Tsinghua U Tsinghua U

2

Network Data is Ubiquitous

Social Network Biology Network

Traffic Network

3

Network Embedding:
Vector Representation of Nodes

Generate

Embed

 Apply feature-based machine

learning algorithms

 Fast computing of nodes similarity

 Support parallel computing

 Applications: link prediction,

node classification, community

detection, centrality measure,

anomaly detection ...

4

Challenge: Billion-scale Network Data

Social Networks

 WeChat: 1 billion monthly active users (March,

2018)

 Facebook: 2 billion active users (2017)

E-commerce Networks

 Amazon: 353 million products, 310 million users, 5

billion orders (2017)

Citation Networks

 130 million authors, 233 million publications, 754

million citations (Aminer, 2018)

How to conduct network embedding for

such large-scale network data？

5

Bottleneck of Existing Methods
 Methods based on random-walks

 DeepWalk, B. Perozzi, et al. KDD 2014.

 LINE, J. Tang, et al. WWW 2015.

 Node2vec, A. Grover, et al. KDD 2016.

 Methods based on matrix factorization

 M-NMF, X. Wang, et al. AAAI 2017.

 AROPE, Z. Zhang, et al. KDD 2018.

 Methods based on deep learning

 SDNE, D. Wang, et al. KDD 2016.

 DVNE, D. Zhu, et al. KDD 2018.

 Common bottleneck: based on sophisticated optimization

 Computationally expansive

 Hard to resort to distributed computing scheme

 Optimization is entangled and needs global information

→ Communication cost is high

 Only handle thousands or millions of nodes and edges

 Network embedding: essentially a dimension reduction problem

 Random projection: optimization-free for dimension reduction

 Basic idea: randomly project data into a low-dimensional subspace

 Extremely efficient and friendly to distributed computing

6

Random Projection

 Key network property: high-order proximity

 Can solve the network sparsity problem

 Measure indirect relationship between nodes

→ How to design a high-order proximity preserved random projection?

7

High-Order Proximity

Target Node

First-order

Second-order

Third-order

…

8

Problem Formulation
 Objective function: matrix factorization of preserving high-order proximity

min
𝑈,𝑉

𝑆 − 𝑈𝑉𝑇 𝑝
2

𝑆 = 𝑓 𝐴 = 𝛼1𝐴
1 + 𝛼2𝐴

2 +⋯+ 𝛼𝑞𝐴
𝑞

 Slight modification: assuming positive semi-definite and using 2 norm

min
𝑈

𝑆𝑆𝑇 − 𝑈𝑈𝑇
2

𝑆 = 𝑓 𝐴 = 𝛼1𝐴
1 + 𝛼2𝐴

2 +⋯+ 𝛼𝑞𝐴
𝑞

 Random projection:

 Denote 𝑅 ∈ ℝ𝑁×𝑑 as a Gaussian random matrix

𝑅𝑖𝑗~𝒩 0,
1

𝑑

 Surprisingly simple result:

𝑈 = 𝑆𝑅

9

Theoretical Guarantee

 Theoretical guarantee

 Basically, random projection can effectively minimize the objective function

 However, calculating 𝑆 is still very time consuming

10

Iterative Projection
 Iterative projection:

𝑈 = 𝑆𝑅 = 𝛼1𝐴
1 + 𝛼2𝐴

2 +⋯+ 𝛼𝑞𝐴
𝑞 𝑅

= 𝛼1𝐴
1𝑅 + 𝛼2𝐴

2𝑅 +⋯+ 𝛼𝑞𝐴
𝑞𝑅

 Can be calculated iteratively

 Why efficient?

 𝐴: 𝑁 ×𝑁 sparse adjacency matrix

 𝑅: 𝑁 × 𝑑 low-dimensional matrix

 Associative law of matrix multiplication

𝐴𝐴…𝐴𝐴𝐴𝑅

× A × A × A

𝐴𝐴…𝐴𝐴 𝐴𝑅

𝐴𝐴…𝐴 𝐴𝐴𝑅

Sparse

Low-dimensional

Sparse

Low-dimensional

Sparse

Low-dimensional

Sparse matrix multiplication!

11

Iterative Projection

A1 A2 Aq
× A × A × A…

× R

𝑈1
× A

𝑈2 𝑈𝑞
× A × A…

× R

Time Consuming!

Efficient!

12

RandNE: Iterative Random projection
Network Embedding

 Time Complexity: 𝑂 𝑞𝑀𝑑 + 𝑁𝑑2

 𝑁/𝑀: number of nodes/edges; 𝑑: dimension; 𝑞: order

 Linear w.r.t. network size

 Only need to calculate q sparse matrix products

 Orders of magnitude faster than existing methods!

 Advantages:

 Distributed Calculation

 Dynamic Updating

13

Distributed Calculation

 Iterative random projection only involves matrix product 𝑈𝑖 = 𝐴𝑈𝑖−1

 Each dimension can be calculated separately

 Property of sparse matrix product

 No communication is needed during calculation!

𝑈 ∈ ℝ𝑁×𝑑

14

Dynamic Updating
 Networks are dynamic in nature

 E.g., in social networks, users add/delete friends, new users join, old users leave

 Changes of edges → Calculate incremental parts!

𝑈𝑖 + Δ𝑈𝑖 = 𝐴 + Δ𝐴 ⋅ (𝑈𝑖−1+Δ𝑈𝑖−1)

→ Δ𝑈𝑖 = 𝐴 ⋅ Δ𝑈𝑖−1 + Δ𝐴 ⋅ 𝑈𝑖−1 + Δ𝐴 ⋅ Δ𝑈𝑖−1

 Changes of nodes → adjust the dimensionality

Time
T T+1

15

Dynamic Updating

 Linear scalability w.r.t. number of changed nodes/edges

 No error accumulation

 Identical results as re-running the algorithm

16

Experimental Setting: Moderate-scale Networks

 Datasets: BlogCatalog, Flickr, YouTube

 Baselines:

 DeepWalk (KDD 2014): DFS random walk + skip-gram

 LINE (WWW 2015): BFS random walk + skip-gram

 Node2vec (KDD 2016): biased random walk + skip-gram

 SDNE (KDD 2016): deep auto-encoder

17

Experimental Results
 Running time

At least dozens of times faster

20

Experimental Results
 Node Classification

22

Experimental Results
 Parameter analysis:

 Effectiveness of preserving high-order proximity

 Scalability

<4 minutes for network with 1 million nodes, 100 million edges with one PC

23

Experiments on a Billion-scale Network
 Experimental results on WeChat

 250 millions nodes, 4.8 billion edges

 Network Reconstruction

 Dynamic link prediction

Better results and no error accumulation!

24

Experimental Results
 Running time and acceleration ratio

 Practical running time for real billion-scale networks

Number of Computing Nodes 4 8 12 16

Running Time(s) 82157 46029 33965 24757

<7 hours!

Support distributed computing

25

Conclusion
 RandNE: a billion-scale network embedding method

 Based on iterative random projection to preserve high-order proximities

 Much more computationally efficient

 Distributed algorithm

 Handle dynamic networks

 Experimental results on moderate-scale networks

 At least one order of magnitude faster

 Better or comparable performance

 Linear scalability

 Experiments on WeChat, a real billion-scale network

 Better results in network reconstruction and link prediction

 No error accumulation

 Linear acceleration ratio

26

Thanks!
Ziwei Zhang, Tsinghua University

zw-zhang16@mails.tsinghua.edu.cn

http://zw-zhang.github.io/

http://nrl.thumedialab.com/

