

IEEE ICDM 2018

Billion-scale Network Embedding with Iterative Random Projection

Ziwei Zhang Tsinghua U

Peng Cui Tsinghua U

Haoyang Li Tsinghua U

Xiao Wang Tsinghua U

Wenwu Zhu Tsinghua U

Network Data is Ubiquitous

Social Network

Biology Network

Traffic Network

Network Embedding: Vector Representation of Nodes

- Apply feature-based machine learning algorithms
- □ Fast computing of nodes similarity
- □ Support parallel computing

 Applications: link prediction, node classification, community detection, centrality measure, anomaly detection ...

Challenge: Billion-scale Network Data

Social Networks

- WeChat: 1 billion monthly active users (March, 2018)
- □ Facebook: 2 billion active users (2017)

E-commerce Networks

Amazon: 353 million products, 310 million users, 5 billion orders (2017)

Citation Networks

 130 million authors, 233 million publications, 754 million citations (Aminer, 2018)

How to conduct network embedding for such large-scale network data?

Bottleneck of Existing Methods

- Methods based on random-walks
 - DeepWalk, B. Perozzi, et al. KDD 2014.
 - LINE, J. Tang, et al. WWW 2015.
 - □ Node2vec, A. Grover, et al. *KDD 2016.*
- Methods based on matrix factorization
 - □ M-NMF, X. Wang, et al. AAAI 2017.
 - AROPE, Z. Zhang, et al. KDD 2018.
- Methods based on deep learning
 - □ SDNE, D. Wang, et al. KDD 2016.
 - DVNE, D. Zhu, et al. *KDD 2018.*
- Common bottleneck: based on sophisticated optimization
 - Computationally expansive
 - □ Hard to resort to distributed computing scheme
 - Optimization is entangled and needs global information

 \rightarrow Communication cost is high

Only handle thousands or millions of nodes and edges

Random Projection

□ Network embedding: essentially a dimension reduction problem

D Random projection: optimization-free for dimension reduction

- □ Basic idea: randomly project data into a low-dimensional subspace
- □ Extremely efficient and friendly to distributed computing

High-Order Proximity

□ Key network property: high-order proximity

- Target Node
- First-order
- Second-order
- Third-order

. . .

- □ Can solve the network sparsity problem
- Measure indirect relationship between nodes
- \rightarrow How to design a high-order proximity preserved random projection?

Problem Formulation

Objective function: matrix factorization of preserving high-order proximity

$$\min_{U,V} ||S - UV^T||_p^2$$

$$S = f(A) = \alpha_1 A^1 + \alpha_2 A^2 + \dots + \alpha_q A^q$$

Slight modification: assuming positive semi-definite and using 2 norm

$$\min_{U} \|SS^{T} - UU^{T}\|_{2}$$
$$S = f(A) = \alpha_{1}A^{1} + \alpha_{2}A^{2} + \dots + \alpha_{q}A^{q}$$

D Random projection:

Denote $R \in \mathbb{R}^{N \times d}$ as a Gaussian random matrix

$$R_{ij} \sim \mathcal{N}\left(0, \frac{1}{d}\right)$$

D Surprisingly simple result:

$$U = SR$$

Theoretical Guarantee

□ Theoretical guarantee

Theorem 1. For any similarity matrix **S**, denote its rank as $r_{\mathbf{S}}$. Then, for any $\epsilon \in (0, \frac{1}{2})$, the following equation holds:

$$P\left[\left\|\mathbf{S}\cdot\mathbf{S}^{T}-\mathbf{U}\cdot\mathbf{U}^{T}\right\|_{2} > \epsilon\left\|\mathbf{S}^{T}\cdot\mathbf{S}\right\|_{2}\right] \leq 2r_{\mathbf{S}}e^{-\frac{\left(\epsilon^{2}-\epsilon^{3}\right)d}{4}},$$

where $\mathbf{U} = \mathbf{S} \cdot \mathbf{R}$ and \mathbf{R} is a Gaussian random matrix.

Basically, random projection can effectively minimize the objective function
However, calculating *S* is still very time consuming

Iterative Projection

□ Iterative projection:

$$U = SR = (\alpha_1 A^1 + \alpha_2 A^2 + \dots + \alpha_q A^q)R$$
$$= \alpha_1 A^1 R + \alpha_2 A^2 R + \dots + \alpha_q A^q R$$
$$\times A \times A \times A$$

Sparse

Can be calculated iteratively

- □ Why efficient?
 - \square A: N × N sparse adjacency matrix
 - $\square R: N \times d \text{ low-dimensional matrix}$
 - Associative law of matrix multiplication

Sparse matrix multiplication! $AA \dots AA AR \leftarrow Low-dimensional$ Sparse matrix multiplication! $AA \dots AA (AR) \leftarrow Low-dimensional$ Sparse $AA \dots AA (AR) \leftarrow Low-dimensional$

Iterative Projection

Time Consuming!

RandNE: Iterative Random projection Network Embedding

Algorithm 1 RandNE: Iterative Random Projection Network Embedding

Require: Adjacency Matrix **A**, Dimensionality d, Order q, Weights $\alpha_0, \alpha_1, ..., \alpha_q$

Ensure: Embedding Results U

1: Generate $\mathbf{R} \in \mathbb{R}^{N \times d} \sim \mathcal{N}(0, \frac{1}{d})$

- 2: Perform a Gram Schmidt process on \mathbf{R} to obtain the orthogonal projection matrix \mathbf{U}_0
- 3: for i in 1:q do

4: Calculate
$$\mathbf{U}_i = \mathbf{A} \cdot \mathbf{U}_{i-1}$$

5: **end for**

6: Calculate
$$\mathbf{U} = \alpha_0 \mathbf{U}_0 + \alpha_1 \mathbf{U}_1 + \dots + \alpha_q \mathbf{U}_q$$

Time Complexity: $O(qMd + Nd^2)$

 \square *N*/*M*: number of nodes/edges; *d*: dimension; *q*: order

Linear w.r.t. network size

Only need to calculate q sparse matrix products

Orders of magnitude faster than existing methods!

□ Advantages:

- Distributed Calculation
- Dynamic Updating

Distributed Calculation

□ Iterative random projection only involves matrix product $U_i = AU_{i-1}$

- **Each dimension** can be calculated separately
 - □ Property of sparse matrix product
- □ No communication is needed during calculation!

Algorithm 2 Distributed Calculation of RandNE **Require:** Adjacency matrix A, Initial Projection U_0 , Parameters of RandNE, K Distributed Servers Ensure: Embedding Results U 1: Broadcast A, U_0 and parameters into K servers 2: Set i = 13: repeat if There is an idle server k then $4 \cdot$ Calculate $\mathbf{U}(i,:)$ in server k 5: i = i + 16: Gather U(i, :) from server k after calculation 7: end if 8. 9: until i > d10: Return U

Dynamic Updating

Networks are dynamic in nature

E.g., in social networks, users add/delete friends, new users join, old users leave

 \square Changes of nodes \rightarrow adjust the dimensionality

Dynamic Updating

Algorithm 3 Dynamic Updating of RandNE **Require:** Adjacency Matrix A, Dynamic Changes ΔA , Previous Projection Results $\mathbf{U}_0, \mathbf{U}_1, ..., \mathbf{U}_q$ **Ensure:** Updated Projection Results $\mathbf{U}'_0, \mathbf{U}'_1, ..., \mathbf{U}'_a$ 1: if $\Delta \mathbf{A}$ includes N' new nodes then Generate an orthogonal projection $\hat{\mathbf{U}}_0 \in \mathbb{R}^{N' \times d}$ 2: Concatenate $\hat{\mathbf{U}}_0$ with \mathbf{U}_0 to obtain \mathbf{U}_0' 3: Add N' all-zero rows in $\mathbf{U}_1...\mathbf{U}_q$ 4: 5: end if 6: Set $\Delta \mathbf{U}_0 = 0$ 7: for i in 1:q do Calculate ΔU_i using Eq. (7) 8: Calculate $\mathbf{U}'_i = \mathbf{U}_i + \Delta \mathbf{U}_i$ 9: 10: end for

□ Linear scalability w.r.t. number of changed nodes/edges

Theorem 3. The time complexity of dynamic updating is linear with the number of changed nodes and number of changed edges respectively.

No error accumulation

Identical results as re-running the algorithm

Experimental Setting: Moderate-scale Networks

Datasets: BlogCatalog, Flickr, YouTube

Dataset	# Nodes	# Edges	# Labels	
BlogCatalog	10,312	667,966	39	
Flickr	80,513	11,799,764	47	
Youtube	1,138,499	5,980,886	195	

TABLE I THE STATISTICS OF DATASETS

D Baselines:

- DeepWalk (KDD 2014): DFS random walk + skip-gram
- □ LINE (WWW 2015): BFS random walk + skip-gram
- □ Node2vec (KDD 2016): biased random walk + skip-gram
- □ SDNE (KDD 2016): deep auto-encoder

D Running time

At least dozens of times faster

Node Classification

□ Parameter analysis:

D Effectiveness of preserving high-order proximity

<4 minutes for network with 1 million nodes, 100 million edges with one PC

Experiments on a Billion-scale Network

- Experimental results on WeChat
 - **2**50 millions nodes, 4.8 billion edges
 - Network Reconstruction

Method	AUC
RandNE	0.989
Common Neighbors	0.783
Adamic Adar	0.783
Random	0.500

Dynamic link prediction

Table 3: AUC scores of dynamic link prediction on WeChat.

Observed Edges	30%	40%	50%	60%	70%
RandNE-D	0.646	0.689	0.726	0.756	0.780
RandNE-R	0.646	0.689	0.726	0.756	0.780
Common Neighbors	0.575	0.611	0.647	0.681	0.712
Adamic Adar	0.575	0.611	0.647	0.681	0.712
Random	0.500	0.500	0.500	0.500	0.500

Better results and no error accumulation!

Running time and acceleration ratio

Table 4: The running time of our method via distributed computing.

Number of Computing Nodes	4	8	12	16
Running Time(s)	82157	46029	33965	24757

<7 hours!

Practical running time for real billion-scale networks

Support distributed computing

Conclusion

- RandNE: a billion-scale network embedding method
 - Based on iterative random projection to preserve high-order proximities
 - Much more computationally efficient
 - Distributed algorithm
 - Handle dynamic networks
- Experimental results on moderate-scale networks
 - □ At least one order of magnitude faster
 - Better or comparable performance
 - □ Linear scalability
- Experiments on WeChat, a real billion-scale network
 - Better results in network reconstruction and link prediction
 - No error accumulation
 - Linear acceleration ratio

Thanks! Ziwei Zhang, Tsinghua University zw-zhang16@mails.tsinghua.edu.cn http://zw-zhang.github.io/ http://nrl.thumedialab.com/

